\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Data encryption algorithm for e-commerce platform based on blockchain technology

  • * Corresponding author: Fei Gao

    * Corresponding author: Fei Gao
Abstract Full Text(HTML) Figure(4) / Table(3) Related Papers Cited by
  • Aiming at the poor encryption effect existing in the data encryption algorithm of e-commerce platform, and the data lost and distorted easily after encrypting, a data encryption algorithm based on blockchain technology is proposed in this paper. By analyzing the symmetric key algorithm and the public key algorithm, the DES encryption algorithm is described in detail. The two related technologies of digital envelopes and message authentication are analyzed to ensure the accuracy of the data and the one time encryption of the data. Based on this, in order to ensure the effectiveness of encryption, the process of asymmetric encryption algorithm based on chaotic sequence of neural network and asymmetric encryption algorithm based on neural network chaotic attractor are analyzed, and the security is tested. While ensuring the accuracy of data, it improves the effect of data encryption and realizes the encryption of e-commerce platform data, which is to realize data encryption algorithm based on blockchain technology. Experimental results show that the~proposed algorithm can encrypt the data of e-commerce platform, and the encryption process is relatively simple, the encryption effect is better, and the accuracy of the encrypted data is relatively high, which provides a theoretical basis for further research of the subject.

    Mathematics Subject Classification: 53C15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  DES encryption algorithm structure

    Figure 2.  Packet symmetric encryption communication scheme based on chaotic neural network

    Figure 3.  Comparison of SNR for encryption with different algorithms

    Figure 4.  Comparison of noise after encryption and decryption with different algorithms

    Table 1.  Hardware environment

    Name System Software Remark
    Dell Win7 (64 bit) Weblogic12.1.1 application system
    Dell Win7 (64 bit) Tamcat6.0.32 SSL Test server
    HP ProLiant DL380 G5 Windows server2003 Oracle11g Routing database, Business database
    HP ProLiant DL380 G5 Win7 (32 bit) Oracle11g Business database
    HP ProLiant DL140 Win7 (32 bit) Oracle11g Business database
     | Show Table
    DownLoad: CSV

    Table 2.  Software environment

    Name Version Purpose
    E-mart application system V1.0 Experimental application system platform
    weblogic 12.1.1 Application server
    tomcat 6.0.32 SSL test application server
    Oracle routing database 11.2.0.1.0 Switching enterprise table space
    Oracle business database 11.2.0.1.0 Storing business data
    openSSL 1.0.2g Generating certificate file and related signature
     | Show Table
    DownLoad: CSV

    Table 3.  Running time of different algorithms

    Data size/MB The proposed algorithm /ms Chaotic sequence /ms Chaotic parameter modulation /ms
    2 137 186 213
    4 189 256 276
    6 256 354 342
    8 301 427 408
    10 387 506 474
    15 452 584 542
     | Show Table
    DownLoad: CSV
  • [1] J. Ahmad and S. O. Hwang, Chaos-based diffusion for highly autocorrelated data in encryption algorithms, Nonlinear Dynamics, 82 (2015), 1839-1850.  doi: 10.1007/s11071-015-2281-0.
    [2] A. U. AhmedS. Rahman and B. Davvaz, On intuitionistic fuzzy idempotent, prime, strongly irreducible and t-pure ideals of semirings, Journal of Intelligent & Fuzzy Systems, 33 (2017), 433-443. 
    [3] T. AsteP. Tasca and T. D. Matteo, Blockchain technologies: The foreseeable impact on society and industry, Computer, 50 (2017), 18-28. 
    [4] H. ChenX. Du and Z. Liu, Optical hyperspectral data encryption in spectrum domain by using 3d arnold and gyrator transforms, Spectroscopy Letters, 49 (2016), 103-107. 
    [5] Y. Chen, Mean square exponential stability of uncertain singular stochastic systems with discrete and distributed delays, Journal of Computational & Applied Mathematics, 20 (2014), 13-26. 
    [6] P. ChengH. YangP. Wei and W. Zhang, A fast image encryption algorithm based on chaotic map and lookup table, Nonlinear Dynamics, 79 (2015), 2121-2131. 
    [7] W. D. H., Data authentication and security assurance based on distributed storage system, Journal of China Academy of Electronics and Information Technology, 6 (2015), 613-619.
    [8] P. Fairley, Blockchain world - feeding the blockchain beast if bitcoin ever does go mainstream, the electricity needed to sustain it will be enormous, IEEE Spectrum, 54 (2017), 36-59. 
    [9] W. Gao and W. Wang, A tight neighborhood union condition on fractional (g, f, n', m)-critical deleted graphs, Colloquium Mathematicum, 149 (2017), 291-298.  doi: 10.4064/cm6959-8-2016.
    [10] L. Guo and L. University, Big data encryption to protect privacy data environment improvement and simulation of the algorithm, Computer Simulation, 338-341.
    [11] T. HuaJ. ChenD. PeiW. Zhang and N. Zhou, Quantum image encryption algorithm based on image correlation decomposition, International Journal of Theoretical Physics, 54 (2015), 526-537. 
    [12] Y. JiangG. LiW. CheY. LiuB. XuG. ShanD. ZhuZ. Su and M. R. Bryce, A neutral dinuclear ir(ⅲ) complex for anti-counterfeiting and data encryption, Chemical Communications, 53 (2017), 3022-3025. 
    [13] K. Lata, Secure data aggregation in wireless sensor networks using homomorphic encryption, International Journal of Electronics, 102 (2015), 690-702. 
    [14] Z. L. F., Research on new data encryption algorithm in big data environment, Bulletin of Science and Technology, 205-208.
    [15] H. Y. Lin, Location-based data encryption for wireless sensor network using dynamic keys, Wireless Networks, 21 (2015), 1-8. 
    [16] S. Lopez and F. Muntaner-Batle, Rainbow eulerian multidigraphs and the product of cycles, Discrete Mathematics and Theoretical Computer Science, 17 (2016), 91-104. 
    [17] A. Panchbudhe, System and method for combining deduplication and encryption of data, 2015.
    [18] K. Suthar and J. Patel, Encryscation: An secure approach for data security using encryption and obfuscation techniques for iaas and daas services in cloud environment, Astrophysical Journal, 663 (2017), 799-807. 
    [19] X. J. TongZ. Wang and M. Zhang, et al., An image encryption algorithm based on the perturbed high-dimensional chaotic map, Nonlinear Dynamics, 80 (2015), 1493-1508.  doi: 10.1007/s11071-015-1957-9.
    [20] X. YangZ. ShenX. Hu and W. Hu, Chaotic encryption algorithm against chosen-plaintext attacks in optical ofdm transmission, IEEE Photonics Technology Letters, 28 (2016), 2499-2502. 
    [21] G. Ye and X. Huang, An image encryption algorithm based on autoblocking and electrocardiography, IEEE Multimedia, 23 (2016), 64-71. 
    [22] H. Q. ZhangY. Z. Zhao and Z. Xu, Encryption and decryption algorithm based on rotation matrix, J. Jilin Univ. Sci., 54 (2016), 229-233. 
    [23] Q. Zhao, Computer simulation of reliability algorithm for wind-induced vibration response control of high structures, Journal of Discrete Mathematical Sciences & Cryptography, 20 (2017), 1519-1523. 
  • 加载中
Open Access Under a Creative Commons license

Figures(4)

Tables(3)

SHARE

Article Metrics

HTML views(2108) PDF downloads(1124) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return