August & September  2019, 12(4&5): 1471-1487. doi: 10.3934/dcdss.2019101

EMD and GNN-AdaBoost fault diagnosis for urban rail train rolling bearings

1. 

State Key Lab of Rail Traffic Control & safety, Beijing Jiaotong University, Beijing 100044, China

2. 

School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China

3. 

Institute of Computing Technology, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China

* Corresponding author: Guoqiang Cai

Received  July 2017 Revised  January 2018 Published  November 2018

Rolling bearings are the most prone components to failure in urban rail trains, presenting potential danger to cities and their residents. This paper puts forward a rolling bearing fault diagnosis method by integrating empirical mode decomposition (EMD) and genetic neural network adaptive boosting (GNN-AdaBoost). EMD is an excellent tool for feature extraction and during which some intrinsic mode functions (IMFs) are obtained. GNN-AdaBoost fault identification algorithm, which uses genetic neural network (GNN) as sub-classifier of the boosting algorithm, is proposed in order to address the shortcomings in classification when only using a GNN. To demonstrate the excellent performance of the approach, experiments are performed to simulate different operating conditions of the rolling bearing, including high speed, low speed, heavy load and light load. For de-nosing signal, by EMD decomposition is applied to obtain IMFs, which is used for extracting the IMF energy feature parameters. The combination of IMF energy feature parameters and some time-domain feature parameters are selected as the input vectors of the classifiers. Finally, GNN-AdaBoost and GNN are applied to experimental examples and the identification results are compared. The results show that GNN-AdaBoost offers significant improvement in rolling bearing fault diagnosis for urban rail trains when compared to GNN alone.

Citation: Guoqiang Cai, Chen Yang, Yue Pan, Jiaojiao Lv. EMD and GNN-AdaBoost fault diagnosis for urban rail train rolling bearings. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1471-1487. doi: 10.3934/dcdss.2019101
References:
[1]

S. AbbasionA. RafsanjaniA. Farshidianfar and N. Irani, Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine, Mechanical Systems & Signal Processing, 21 (2007), 2933-2945. 

[2]

A. Ahadi and A. Dehghan, The inapproximability for the (0, 1)-additive number, Discrete Mathematics and Theoretical Computer Science, 17 (2016), 217-226. 

[3]

M. Y. AsrM. M. EttefaghR. Hassannejad and S. N. Razavi, Diagnosis of combined faults in rotary machinery by non-naive bayesian approach, Mechanical Systems & Signal Processing, 85 (2017), 56-70. 

[4]

I. S. Bozchalooi and M. Liang, A smoothness index-guided approach to wavelet parameter selection in signal de-noising and fault detection, Journal of Sound & Vibration, 308 (2007), 246-267. 

[5]

G. ChenJ. Chen and G. M. Dong, Chirplet wigner-ville distribution for time-frequency representation and its application, Mechanical Systems & Signal Processing, 41 (2013), 1-13. 

[6]

J. ChengY. Yang and Y. Yang, A rotating machinery fault diagnosis method based on local mean decomposition, Digital Signal Processing, 22 (2012), 356-366.  doi: 10.1016/j.dsp.2011.09.008.

[7]

A. Figueiredo and M. Nave, Time-frequency analysis of nonstationary fusion plasma signals: A comparison between the choi-williams distribution and wavelets, Review of scientific instruments, 75 (2004), 4268-4270. 

[8]

Y. Freund and R. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences, 55 (1997), 119-139.  doi: 10.1006/jcss.1997.1504.

[9]

S. GholizadehE. Salajegheh and P. Torkzadeh, Structural optimization with frequency constraints by genetic algorithm using wavelet radial basis function neural network, Journal of Sound & Vibration, 312 (2008), 316-331. 

[10]

N. E. HuangZ. ShenS. R. LongM. C. WuH. H. ShihW. ZhengN. YenC. C. TungH. H. Liu and N. C. Yen, The empirical mode decomposition method and the hilbert spectrum for non-stationary time series analysis, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1998), 903-995.  doi: 10.1098/rspa.1998.0193.

[11]

M. C. Kim and C. H. Choi, A new weight initialization method for the mlp with the bp in multiclass classification problems, Neural Processing Letters, 6 (1997), 11-23. 

[12]

R. KleinD. Ingman and S. Braun, Non-stationary signals: Phase-energy approach-theory and simulations, Mechanical Systems & Signal Processing, 15 (2001), 1061-1089. 

[13]

L. I. Kuncheva and C. J. Whitaker, Using Diversity with Three Variants of Boosting: Aggressive, Conservative, and Inverse, In: International Workshop on Multiple Classifier Systems, 2002: Springer, 2002.

[14]

B. LiM. Y. ChowY. Tipsuwan and J. C. Hung, Neural-network-based motor rolling bearing fault diagnosis, IEEE Transactions on Industrial Electronics, 47 (2002), 1060-1069. 

[15]

X. LiL. Wang and E. Sung, A study of adaboost with svm based weak learners, IEEE International Joint Conference on Neural Networks, 2005. IJCNN '05. Proceedings, 1 (2005), 196-201. 

[16]

X. LiL. Wang and E. Sung, Adaboost with svm-based component classifiers, Engineering Applications of Artificial Intelligence, 21 (2008), 785-795. 

[17]

H. LiuJ. ZhangY. Cheng and C. Lu, Fault diagnosis of gearbox using empirical mode decomposition and multi-fractal detrended cross-correlation analysis, Journal of Sound & Vibration, 385 (2016), 350-371. 

[18]

C. Meshram and S. A. Meshram, Constructing id-based cryptographic technique for ifp and gdlp based cryptosystem, Journal of Discrete Mathematical Sciences & Cryptography, 20 (2017), 1121-1134.  doi: 10.1080/09720529.2015.1032621.

[19]

C. C. Peck and A. P. Dhawan, Genetic algorithms as global random search methods: An alternative perspective, Evolutionary Computation, 3 (2014), 39-80. 

[20]

Z. K. PengP. W. Tse and F. L. Chu, An improved hilbert-huang transform and its application in vibration signal analysis, Journal of Sound & Vibration, 286 (2005), 1151-1153.  doi: 10.1016/j.jsv.2004.01.049.

[21]

B. Samanta and K. R. Al-Balushi, Artificial neural network based fault diagnostics of rolling element bearings using time-domain features, Mechanical Systems & Signal Processing, 17 (2003), 317-328. 

[22]

R. E. Schapire and Y. Singer, Improved Boosting Algorithms Using Confidence-rated Predictions, vol. 37, Machine Learning, 1999.

[23]

Z. Y. ShiS. S. Law and X. Xu, Identification of linear time-varying mdof dynamic systems from forced excitation using hilbert transform and emd method, Journal of Sound & Vibration, 321 (2009), 572-589. 

[24]

H. Wang and P. Chen, Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network, Computers & Industrial Engineering, 60 (2011), 511-518. 

[25]

M. Weinfeld, Integrated Artificial Neural Networks: Components for Higher Level Architectures with New Properties, Springer Berlin Heidelberg, 1990.

[26]

Y. XiangJ. Lu and Y. Y. Huang, A fast wave superposition spectral method with complex radius vector combined with two-dimensional fast fourier transform algorithm for acoustic radiation of axisymmetric bodies, Journal of Sound and Vibration, 331 (2012), 1441-1454. 

show all references

References:
[1]

S. AbbasionA. RafsanjaniA. Farshidianfar and N. Irani, Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine, Mechanical Systems & Signal Processing, 21 (2007), 2933-2945. 

[2]

A. Ahadi and A. Dehghan, The inapproximability for the (0, 1)-additive number, Discrete Mathematics and Theoretical Computer Science, 17 (2016), 217-226. 

[3]

M. Y. AsrM. M. EttefaghR. Hassannejad and S. N. Razavi, Diagnosis of combined faults in rotary machinery by non-naive bayesian approach, Mechanical Systems & Signal Processing, 85 (2017), 56-70. 

[4]

I. S. Bozchalooi and M. Liang, A smoothness index-guided approach to wavelet parameter selection in signal de-noising and fault detection, Journal of Sound & Vibration, 308 (2007), 246-267. 

[5]

G. ChenJ. Chen and G. M. Dong, Chirplet wigner-ville distribution for time-frequency representation and its application, Mechanical Systems & Signal Processing, 41 (2013), 1-13. 

[6]

J. ChengY. Yang and Y. Yang, A rotating machinery fault diagnosis method based on local mean decomposition, Digital Signal Processing, 22 (2012), 356-366.  doi: 10.1016/j.dsp.2011.09.008.

[7]

A. Figueiredo and M. Nave, Time-frequency analysis of nonstationary fusion plasma signals: A comparison between the choi-williams distribution and wavelets, Review of scientific instruments, 75 (2004), 4268-4270. 

[8]

Y. Freund and R. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences, 55 (1997), 119-139.  doi: 10.1006/jcss.1997.1504.

[9]

S. GholizadehE. Salajegheh and P. Torkzadeh, Structural optimization with frequency constraints by genetic algorithm using wavelet radial basis function neural network, Journal of Sound & Vibration, 312 (2008), 316-331. 

[10]

N. E. HuangZ. ShenS. R. LongM. C. WuH. H. ShihW. ZhengN. YenC. C. TungH. H. Liu and N. C. Yen, The empirical mode decomposition method and the hilbert spectrum for non-stationary time series analysis, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1998), 903-995.  doi: 10.1098/rspa.1998.0193.

[11]

M. C. Kim and C. H. Choi, A new weight initialization method for the mlp with the bp in multiclass classification problems, Neural Processing Letters, 6 (1997), 11-23. 

[12]

R. KleinD. Ingman and S. Braun, Non-stationary signals: Phase-energy approach-theory and simulations, Mechanical Systems & Signal Processing, 15 (2001), 1061-1089. 

[13]

L. I. Kuncheva and C. J. Whitaker, Using Diversity with Three Variants of Boosting: Aggressive, Conservative, and Inverse, In: International Workshop on Multiple Classifier Systems, 2002: Springer, 2002.

[14]

B. LiM. Y. ChowY. Tipsuwan and J. C. Hung, Neural-network-based motor rolling bearing fault diagnosis, IEEE Transactions on Industrial Electronics, 47 (2002), 1060-1069. 

[15]

X. LiL. Wang and E. Sung, A study of adaboost with svm based weak learners, IEEE International Joint Conference on Neural Networks, 2005. IJCNN '05. Proceedings, 1 (2005), 196-201. 

[16]

X. LiL. Wang and E. Sung, Adaboost with svm-based component classifiers, Engineering Applications of Artificial Intelligence, 21 (2008), 785-795. 

[17]

H. LiuJ. ZhangY. Cheng and C. Lu, Fault diagnosis of gearbox using empirical mode decomposition and multi-fractal detrended cross-correlation analysis, Journal of Sound & Vibration, 385 (2016), 350-371. 

[18]

C. Meshram and S. A. Meshram, Constructing id-based cryptographic technique for ifp and gdlp based cryptosystem, Journal of Discrete Mathematical Sciences & Cryptography, 20 (2017), 1121-1134.  doi: 10.1080/09720529.2015.1032621.

[19]

C. C. Peck and A. P. Dhawan, Genetic algorithms as global random search methods: An alternative perspective, Evolutionary Computation, 3 (2014), 39-80. 

[20]

Z. K. PengP. W. Tse and F. L. Chu, An improved hilbert-huang transform and its application in vibration signal analysis, Journal of Sound & Vibration, 286 (2005), 1151-1153.  doi: 10.1016/j.jsv.2004.01.049.

[21]

B. Samanta and K. R. Al-Balushi, Artificial neural network based fault diagnostics of rolling element bearings using time-domain features, Mechanical Systems & Signal Processing, 17 (2003), 317-328. 

[22]

R. E. Schapire and Y. Singer, Improved Boosting Algorithms Using Confidence-rated Predictions, vol. 37, Machine Learning, 1999.

[23]

Z. Y. ShiS. S. Law and X. Xu, Identification of linear time-varying mdof dynamic systems from forced excitation using hilbert transform and emd method, Journal of Sound & Vibration, 321 (2009), 572-589. 

[24]

H. Wang and P. Chen, Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network, Computers & Industrial Engineering, 60 (2011), 511-518. 

[25]

M. Weinfeld, Integrated Artificial Neural Networks: Components for Higher Level Architectures with New Properties, Springer Berlin Heidelberg, 1990.

[26]

Y. XiangJ. Lu and Y. Y. Huang, A fast wave superposition spectral method with complex radius vector combined with two-dimensional fast fourier transform algorithm for acoustic radiation of axisymmetric bodies, Journal of Sound and Vibration, 331 (2012), 1441-1454. 

Figure 1.  The process flow for applying the GNN-AdaBoost algorithm
Figure 2.  Procedure for rolling bearing fault diagnosis based on EMD and GNN-AdaBoost
Figure 3.  Simulator stand for rolling bearing faults
Figure 4.  Different health conditions of the rolling bearing: (a) normal; (b) inner-race fault; (c) outer-race fault; (d) rolling ball fault
Figure 5.  Time-domain waveform figures of four rolling bearing states under the working condition of 6 r/s speed and light load: (a) normal; (b) inner-race fault; (c) outer-race fault and (d) rolling ball fault.
Figure 6.  Diagram of the 13 IMF components
Figure 7.  Total error and weight changes
Figure 8.  Error variations and iterations of GNN-AdaBoost
Figure 9.  The testing results of GNN-AdaBoost and GNN under different working conditions: (a) 6 r/s and light load; (b) 6 r/s and heavy load; (c) 8 r/s and light load (d) 8 r/s and heavy load
Table 1.  Expected output code
Fault type Expected output code
Normal (1 0 0 0)
Inner-race fault (0 1 0 0)
Outer-race fault (0 0 1 0)
Rolling ball fault (0 0 0 1)
Fault type Expected output code
Normal (1 0 0 0)
Inner-race fault (0 1 0 0)
Outer-race fault (0 0 1 0)
Rolling ball fault (0 0 0 1)
Table 2.  Accuracy comparisons between GNN-AdaBoost and GNN under different working conditions
Experimental condition GNN-AdaBoost GNN
Right Wrong Accuracy (%) Right Wrong Accuracy (%)
Speed 6 r/s, light load 77 3 96.25 71 9 88.75
Speed 6 r/s, heavy load 78 2 97.5 74 6 92.5
Speed 8 r/s, light load 78 2 97.5 73 7 91.25
Speed 8 r/s, heavy load 79 1 98.75 76 4 95
Experimental condition GNN-AdaBoost GNN
Right Wrong Accuracy (%) Right Wrong Accuracy (%)
Speed 6 r/s, light load 77 3 96.25 71 9 88.75
Speed 6 r/s, heavy load 78 2 97.5 74 6 92.5
Speed 8 r/s, light load 78 2 97.5 73 7 91.25
Speed 8 r/s, heavy load 79 1 98.75 76 4 95
[1]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial and Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[2]

Siwei Yu, Jianwei Ma, Stanley Osher. Geometric mode decomposition. Inverse Problems and Imaging, 2018, 12 (4) : 831-852. doi: 10.3934/ipi.2018035

[3]

Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, J. Nathan Kutz. On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 2014, 1 (2) : 391-421. doi: 10.3934/jcd.2014.1.391

[4]

Steven L. Brunton, Joshua L. Proctor, Jonathan H. Tu, J. Nathan Kutz. Compressed sensing and dynamic mode decomposition. Journal of Computational Dynamics, 2015, 2 (2) : 165-191. doi: 10.3934/jcd.2015002

[5]

Hao Zhang, Scott T. M. Dawson, Clarence W. Rowley, Eric A. Deem, Louis N. Cattafesta. Evaluating the accuracy of the dynamic mode decomposition. Journal of Computational Dynamics, 2020, 7 (1) : 35-56. doi: 10.3934/jcd.2020002

[6]

Rakesh Pilkar, Erik M. Bollt, Charles Robinson. Empirical mode decomposition/Hilbert transform analysis of postural responses to small amplitude anterior-posterior sinusoidal translations of varying frequencies. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1085-1097. doi: 10.3934/mbe.2011.8.1085

[7]

Mojtaba F. Fathi, Ahmadreza Baghaie, Ali Bakhshinejad, Raphael H. Sacho, Roshan M. D'Souza. Time-resolved denoising using model order reduction, dynamic mode decomposition, and kalman filter and smoother. Journal of Computational Dynamics, 2020, 7 (2) : 469-487. doi: 10.3934/jcd.2020019

[8]

Mustaffa Alfatlawi, Vaibhav Srivastava. An incremental approach to online dynamic mode decomposition for time-varying systems with applications to EEG data modeling. Journal of Computational Dynamics, 2020, 7 (2) : 209-241. doi: 10.3934/jcd.2020009

[9]

Yaobang Ye, Zongyu Zuo, Michael Basin. Robust adaptive sliding mode tracking control for a rigid body based on Lie subgroups of SO(3). Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1823-1837. doi: 10.3934/dcdss.2022010

[10]

Sangkyu Baek, Bong Dae Choi. Performance analysis of power save mode in IEEE 802.11 infrastructure wireless local area network. Journal of Industrial and Management Optimization, 2009, 5 (3) : 481-492. doi: 10.3934/jimo.2009.5.481

[11]

Cecilia Cavaterra, Denis Enăchescu, Gabriela Marinoschi. Sliding mode control of the Hodgkin–Huxley mathematical model. Evolution Equations and Control Theory, 2019, 8 (4) : 883-902. doi: 10.3934/eect.2019043

[12]

Tomáš Roubíček, V. Mantič, C. G. Panagiotopoulos. A quasistatic mixed-mode delamination model. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 591-610. doi: 10.3934/dcdss.2013.6.591

[13]

Clelia Marchionna. Free vibrations in space of the single mode for the Kirchhoff string. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2947-2971. doi: 10.3934/cpaa.2013.12.2947

[14]

Tiantian Mu, Jun-E Feng, Biao Wang. Pinning detectability of Boolean control networks with injection mode. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022089

[15]

Lixin Xu, Wanquan Liu. A new recurrent neural network adaptive approach for host-gate way rate control protocol within intranets using ATM ABR service. Journal of Industrial and Management Optimization, 2005, 1 (3) : 389-404. doi: 10.3934/jimo.2005.1.389

[16]

Nasim Ullah, Ahmad Aziz Al-Ahmadi. A triple mode robust sliding mode controller for a nonlinear system with measurement noise and uncertainty. Mathematical Foundations of Computing, 2020, 3 (2) : 81-99. doi: 10.3934/mfc.2020007

[17]

Stefano Bianchini, Daniela Tonon. A decomposition theorem for $BV$ functions. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1549-1566. doi: 10.3934/cpaa.2011.10.1549

[18]

Piotr Słowiński, Bernd Krauskopf, Sebastian Wieczorek. Mode structure of a semiconductor laser with feedback from two external filters. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 519-586. doi: 10.3934/dcdsb.2015.20.519

[19]

Bo Lu, Shenquan Liu, Xiaofang Jiang, Jing Wang, Xiaohui Wang. The mixed-mode oscillations in Av-Ron-Parnas-Segel model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 487-504. doi: 10.3934/dcdss.2017024

[20]

Qi Lü, Enrique Zuazua. Robust null controllability for heat equations with unknown switching control mode. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4183-4210. doi: 10.3934/dcds.2014.34.4183

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (810)
  • HTML views (1007)
  • Cited by (2)

Other articles
by authors

[Back to Top]