August & September  2019, 12(4&5): 1489-1500. doi: 10.3934/dcdss.2019102

An efficient RFID anonymous batch authentication protocol based on group signature

1. 

School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China

2. 

The State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China

* Corresponding author: Lanjun Dang

Received  June 2017 Revised  November 2017 Published  November 2018

In order to address the anonymous batch authentication problem of a legal reader to many tags in RFID (Radio Frequency Identification) system, an efficient RFID anonymous batch authentication protocol was proposed based on group signature. The anonymous batch authentications of reader to many tags are achieved by using a one-time group signature based on Hash function; the authentication of the tag to the reader is realized by employing MAC (Message Authentication Code). The tag's anonymity is achieved via the dynamic TID (Temporary Identity) instead of the tag's identity. The proposed protocol can resist replay attacks by using random number. Theoretical analyses show that, the proposed protocol reaches the expected security goals. Compared with the protocol proposed by Liu, the proposed protocol reduces the computation and storage of the server and tag while improving the security.

Citation: Jie Xu, Lanjun Dang. An efficient RFID anonymous batch authentication protocol based on group signature. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1489-1500. doi: 10.3934/dcdss.2019102
References:
[1]

M. Akram and M. Sarwar, Novel applications of m-polar fuzzy hypergraphs, Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 32 (2017), 2747-2762.   Google Scholar

[2]

W.-S. Bae, Formal verification of an RFID authentication protocol based on Hash function and secret code, Wireless Personal Communications, 79 (2014), 2595-2609.   Google Scholar

[3]

A. Basar and M. Y. Abbasi, On ordered bi-ideals in ordered-semigroups, Journal of Discrete Mathematical Sciences and Cryptography, 20 (2017), 645-652.  doi: 10.1080/09720529.2015.1130474.  Google Scholar

[4]

L. Batina, Y. K. Lee and S. Seys, et al., Extending ECC-based RFID authentication protocols to privacy-preserving multi-party grouping proofs, Personal and Ubiquitous Computing, 16 (2012), 323-335. Google Scholar

[5]

X. Cao, W. Kou and H. Li, Secure mobile IP registration scheme with AAA from parings to reduce registration delay, CIS 2006, New York: IEEE Press, 2006, 1037-1042 Google Scholar

[6]

W. Gao and W. F. Wang, A tight neighborhood union condition on fractional (g, f, n', m)-critical deleted graphs, Colloquium Mathematicum, 149 (2017), 291-298.  doi: 10.4064/cm6959-8-2016.  Google Scholar

[7]

J. B. Gurubani, H. Thakkar and D. R. Patel, Improvements over extended LMAP+: RFID authentication protocol, Proceedings of 6th International Conference on Trust Management IFIPTM, Surat: Springer Boston, 2012, 225-231. Google Scholar

[8]

D. He, N. Kumar and N. Chilamkurti, et al., Lightweight ECC based RFID authentication integrated with an ID verifier transfer protocol, Journal of Medical Systems, 38 (2014), 116. Google Scholar

[9]

A. Juels, Strengthening EPC Tag against Cloning, Proceedings of ACM Workshop on Wireless Security, Cologne, 2005, 67-76. Google Scholar

[10]

M. KianersiM. Gardeshi and M. Arjmand, SULMA: A secure ultra light-weight mutual authentication protocol for lowcost RFID tags, International Journal of UbiComp (IJU), 2 (2011), 17-24.   Google Scholar

[11]

S. Li, Handwritten character recognition technology combined with artificial intelligence, Journal of Discrete Mathematical Sciences and Cryptography, 20 (2017), 167-178.   Google Scholar

[12]

H. LiuX. Li and J. Bai, A new one-time group signature based on Hash function, Journal of Beijing Electronic Science and Technology Institute, 21 (2013), 25-29.   Google Scholar

[13]

J. Liu, R.-J. Chen and D.-S. Yan, et al., Efficient identity-based ring signature for RFID authentication scheme, Proceeding of the IEEE International Conference on RFID-Technology and Applications, Guangzhou: IEEE, 2010, 7-10. Google Scholar

[14]

Y. L. Liu, X. L. Qin and B. H. Li, et al., A Forward-Secure Grouping-proof protocol for Multiple RFID tags, International Journal of Computational Intelligence Systems, 5 (2012), 824-833. Google Scholar

[15]

M. Ohkubo, K. Suzuki and S. Kinoshita, Hash-chain based forward secure privacy protection scheme for low-cost RFID, Proceedings of the 2004 Symposium on Cryptography and Information Security (SCIS 2004), Sendai, 2004, 719-724. Google Scholar

[16]

S. E. Sarma, S. A. Weis and D. W. Engels, RFID systems and security and privacy implications, Proceedings of the 4th International Workshop on Cryptographic Hardware and Embedded Systems (CHES 2002), LNCS, 2523, Berlin: Springer-Verlag, 2003, 454-469. Google Scholar

[17]

Y. TianG. L. Chen and J. Li, A New Ultralightweight RFID Authentication Protocol with Permutation, IEEE Communications Letters, 16 (2012), 702-705.   Google Scholar

[18]

S. A. Weis, S. E. Sarma, R. L. Rivest and D. W. Engels, Security and privacy aspects of lowcost radio frequency identification systems, Proceedings of the 1st International Conference on Security in Pervasive Computing, LNCS, 2802, Berlin: Springer-Verlag, 2004, 719-724. Google Scholar

[19]

J. P. de Wet and S. A. van Aardt, Traceability of locally Hamiltonian and locally traceable graphs, Discrete Mathematics and Theoretical Computer Science, 17 (2016), 245-262.   Google Scholar

show all references

References:
[1]

M. Akram and M. Sarwar, Novel applications of m-polar fuzzy hypergraphs, Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 32 (2017), 2747-2762.   Google Scholar

[2]

W.-S. Bae, Formal verification of an RFID authentication protocol based on Hash function and secret code, Wireless Personal Communications, 79 (2014), 2595-2609.   Google Scholar

[3]

A. Basar and M. Y. Abbasi, On ordered bi-ideals in ordered-semigroups, Journal of Discrete Mathematical Sciences and Cryptography, 20 (2017), 645-652.  doi: 10.1080/09720529.2015.1130474.  Google Scholar

[4]

L. Batina, Y. K. Lee and S. Seys, et al., Extending ECC-based RFID authentication protocols to privacy-preserving multi-party grouping proofs, Personal and Ubiquitous Computing, 16 (2012), 323-335. Google Scholar

[5]

X. Cao, W. Kou and H. Li, Secure mobile IP registration scheme with AAA from parings to reduce registration delay, CIS 2006, New York: IEEE Press, 2006, 1037-1042 Google Scholar

[6]

W. Gao and W. F. Wang, A tight neighborhood union condition on fractional (g, f, n', m)-critical deleted graphs, Colloquium Mathematicum, 149 (2017), 291-298.  doi: 10.4064/cm6959-8-2016.  Google Scholar

[7]

J. B. Gurubani, H. Thakkar and D. R. Patel, Improvements over extended LMAP+: RFID authentication protocol, Proceedings of 6th International Conference on Trust Management IFIPTM, Surat: Springer Boston, 2012, 225-231. Google Scholar

[8]

D. He, N. Kumar and N. Chilamkurti, et al., Lightweight ECC based RFID authentication integrated with an ID verifier transfer protocol, Journal of Medical Systems, 38 (2014), 116. Google Scholar

[9]

A. Juels, Strengthening EPC Tag against Cloning, Proceedings of ACM Workshop on Wireless Security, Cologne, 2005, 67-76. Google Scholar

[10]

M. KianersiM. Gardeshi and M. Arjmand, SULMA: A secure ultra light-weight mutual authentication protocol for lowcost RFID tags, International Journal of UbiComp (IJU), 2 (2011), 17-24.   Google Scholar

[11]

S. Li, Handwritten character recognition technology combined with artificial intelligence, Journal of Discrete Mathematical Sciences and Cryptography, 20 (2017), 167-178.   Google Scholar

[12]

H. LiuX. Li and J. Bai, A new one-time group signature based on Hash function, Journal of Beijing Electronic Science and Technology Institute, 21 (2013), 25-29.   Google Scholar

[13]

J. Liu, R.-J. Chen and D.-S. Yan, et al., Efficient identity-based ring signature for RFID authentication scheme, Proceeding of the IEEE International Conference on RFID-Technology and Applications, Guangzhou: IEEE, 2010, 7-10. Google Scholar

[14]

Y. L. Liu, X. L. Qin and B. H. Li, et al., A Forward-Secure Grouping-proof protocol for Multiple RFID tags, International Journal of Computational Intelligence Systems, 5 (2012), 824-833. Google Scholar

[15]

M. Ohkubo, K. Suzuki and S. Kinoshita, Hash-chain based forward secure privacy protection scheme for low-cost RFID, Proceedings of the 2004 Symposium on Cryptography and Information Security (SCIS 2004), Sendai, 2004, 719-724. Google Scholar

[16]

S. E. Sarma, S. A. Weis and D. W. Engels, RFID systems and security and privacy implications, Proceedings of the 4th International Workshop on Cryptographic Hardware and Embedded Systems (CHES 2002), LNCS, 2523, Berlin: Springer-Verlag, 2003, 454-469. Google Scholar

[17]

Y. TianG. L. Chen and J. Li, A New Ultralightweight RFID Authentication Protocol with Permutation, IEEE Communications Letters, 16 (2012), 702-705.   Google Scholar

[18]

S. A. Weis, S. E. Sarma, R. L. Rivest and D. W. Engels, Security and privacy aspects of lowcost radio frequency identification systems, Proceedings of the 1st International Conference on Security in Pervasive Computing, LNCS, 2802, Berlin: Springer-Verlag, 2004, 719-724. Google Scholar

[19]

J. P. de Wet and S. A. van Aardt, Traceability of locally Hamiltonian and locally traceable graphs, Discrete Mathematics and Theoretical Computer Science, 17 (2016), 245-262.   Google Scholar

Figure 1.  A typical RFID system
Figure 2.  The proposed RFID batch authentication protocol based on group signature
Figure 3.  The comparison of the calculation time of server in the two protocols
Figure 4.  The comparison of the storage amount of tag in the two protocols
Figure 5.  The comparison of the storage amount of server in the two protocols
Table 1.  Notations
$K_{ID_i}$ authentication key of each tag, used to authenticate a reader
$K_{i}$ private key of each tag in the group signature scheme
$X_{i}$ exclusive-OR of the Hash values of $n$ strings in one tag's private key
$Y$ group public key
$C_{i}$ exclusive-OR of the other $m$-1 tags' $X$ values except the tag that generated group signature
$\sigma$ $\sigma =(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}, C_{i})$, the group signature be generated by one tag
ID$_{i}$ one tag's identity information
$<M>K$ MAC value of message $M$ under key $K$
$\vert\vert $ concatenation of two data
$K_{ID_i}$ authentication key of each tag, used to authenticate a reader
$K_{i}$ private key of each tag in the group signature scheme
$X_{i}$ exclusive-OR of the Hash values of $n$ strings in one tag's private key
$Y$ group public key
$C_{i}$ exclusive-OR of the other $m$-1 tags' $X$ values except the tag that generated group signature
$\sigma$ $\sigma =(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}, C_{i})$, the group signature be generated by one tag
ID$_{i}$ one tag's identity information
$<M>K$ MAC value of message $M$ under key $K$
$\vert\vert $ concatenation of two data
Table 2.  The security comparisons of the two protocols
Mutual
authentication
Tag
anonymity
Message
confidentiality
Message
integrity
Message
freshness
The Protocol [13] $\backslash $ $\surd $ $\surd $ $\surd $ $\surd $
Our protocol $\surd $ $\surd $ $\surd $ $\surd $ $\surd $
Mutual
authentication
Tag
anonymity
Message
confidentiality
Message
integrity
Message
freshness
The Protocol [13] $\backslash $ $\surd $ $\surd $ $\surd $ $\surd $
Our protocol $\surd $ $\surd $ $\surd $ $\surd $ $\surd $
Table 3.  The performance comparisons of the two protocols
Tag's
calculation
Server's
calculation
Tag's
storage
Server's
storage
The protocol [13] 0 mSM+2$P$ 20$k(m$+2)bytes 20($k+m)$bytes
Our protocol 82$h$ ($m$+81)$h$ 3260bytes (42$m$+20)bytes
Tag's
calculation
Server's
calculation
Tag's
storage
Server's
storage
The protocol [13] 0 mSM+2$P$ 20$k(m$+2)bytes 20($k+m)$bytes
Our protocol 82$h$ ($m$+81)$h$ 3260bytes (42$m$+20)bytes
Table 4.  The cryptography operation times of server (ms)
Pairing Scalar multiplication Hash operation
3.16 0.79 0.0002
Pairing Scalar multiplication Hash operation
3.16 0.79 0.0002
[1]

Meenakshi Kansal, Ratna Dutta, Sourav Mukhopadhyay. Group signature from lattices preserving forward security in dynamic setting. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020027

[2]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[3]

Minvydas Ragulskis, Zenonas Navickas. Hash function construction based on time average moiré. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 1007-1020. doi: 10.3934/dcdsb.2007.8.1007

[4]

D. R. Stinson. Unconditionally secure chaffing and winnowing with short authentication tags. Advances in Mathematics of Communications, 2007, 1 (2) : 269-280. doi: 10.3934/amc.2007.1.269

[5]

Claude Carlet, Juan Carlos Ku-Cauich, Horacio Tapia-Recillas. Bent functions on a Galois ring and systematic authentication codes. Advances in Mathematics of Communications, 2012, 6 (2) : 249-258. doi: 10.3934/amc.2012.6.249

[6]

Philip Lafrance, Alfred Menezes. On the security of the WOTS-PRF signature scheme. Advances in Mathematics of Communications, 2019, 13 (1) : 185-193. doi: 10.3934/amc.2019012

[7]

Ke Gu, Xinying Dong, Linyu Wang. Efficient traceable ring signature scheme without pairings. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020016

[8]

M. B. Paterson, D. R. Stinson, R. Wei. Combinatorial batch codes. Advances in Mathematics of Communications, 2009, 3 (1) : 13-27. doi: 10.3934/amc.2009.3.13

[9]

JiYoon Jung, Carl Mummert, Elizabeth Niese, Michael Schroeder. On erasure combinatorial batch codes. Advances in Mathematics of Communications, 2018, 12 (1) : 49-65. doi: 10.3934/amc.2018003

[10]

Yuzhong Zhang, Chunsong Bai, Qingguo Bai, Jianteng Xu. Duplicating in batch scheduling. Journal of Industrial & Management Optimization, 2007, 3 (4) : 685-692. doi: 10.3934/jimo.2007.3.685

[11]

Yunwen Liu, Longjiang Qu, Chao Li. New constructions of systematic authentication codes from three classes of cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 1-16. doi: 10.3934/amc.2018001

[12]

Yang Lu, Quanling Zhang, Jiguo Li. An improved certificateless strong key-insulated signature scheme in the standard model. Advances in Mathematics of Communications, 2015, 9 (3) : 353-373. doi: 10.3934/amc.2015.9.353

[13]

Jintai Ding, Zheng Zhang, Joshua Deaton. The singularity attack to the multivariate signature scheme HIMQ-3. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020043

[14]

Richard A. Brualdi, Kathleen P. Kiernan, Seth A. Meyer, Michael W. Schroeder. Combinatorial batch codes and transversal matroids. Advances in Mathematics of Communications, 2010, 4 (3) : 419-431. doi: 10.3934/amc.2010.4.419

[15]

Volker Rehbock, Iztok Livk. Optimal control of a batch crystallization process. Journal of Industrial & Management Optimization, 2007, 3 (3) : 585-596. doi: 10.3934/jimo.2007.3.585

[16]

Lutz Recke, Anatoly Samoilenko, Alexey Teplinsky, Viktor Tkachenko, Serhiy Yanchuk. Frequency locking of modulated waves. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 847-875. doi: 10.3934/dcds.2011.31.847

[17]

Seunghee Lee, Ganguk Hwang. A new analytical model for optimized cognitive radio networks based on stochastic geometry. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1883-1899. doi: 10.3934/jimo.2017023

[18]

Haruki Katayama, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Effect of spectrum sensing overhead on performance for cognitive radio networks with channel bonding. Journal of Industrial & Management Optimization, 2014, 10 (1) : 21-40. doi: 10.3934/jimo.2014.10.21

[19]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019111

[20]

Leiyang Wang, Zhaohui Liu. Heuristics for parallel machine scheduling with batch delivery consideration. Journal of Industrial & Management Optimization, 2014, 10 (1) : 259-273. doi: 10.3934/jimo.2014.10.259

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (36)
  • HTML views (293)
  • Cited by (0)

Other articles
by authors

[Back to Top]