October  2019, 12(6): 1547-1588. doi: 10.3934/dcdss.2019107

Formal asymptotic analysis of elastic beams and thin-walled beams: A derivation of the Vlassov equations and their generalization to the anisotropic heterogeneous case

1. 

Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190, Institut Jean le Rond ∂'Alembert, F-75005 Paris, France

2. 

Université Paris-Est, Noisy-le-Grand Cedex, France

* Corresponding author: Patrick Ballard

Received  January 2018 Revised  June 2018 Published  November 2018

The modelling of ordinary beams and thin-walled beams is rigorously obtained from a formal asymptotic analysis of three-dimensional linear elasticity. In the case of isotropic homogeneous elasticity, ordinary beams yield the Navier-Bernoulli beam model, thin-walled beams with open profile yield the Vlassov beam model and thin-walled beams with closed profile the Navier-Bernoulli beam model. The formal asymptotic analysis is also extensively performed in the case of the most general anisotropic transversely heterogeneous material (meaning the heterogeneity is the same in every cross-section), delivering the same qualitative results. We prove, in particular, the non-intuitive fact that the warping function appearing in the Vlassov model for general anisotropic transversely heterogeneous material, is the same as the one appearing in the isotropic homogeneous case. In the general case of anisotropic transversely heterogeneous material, the analysis provides a rigorous and systematic constructive procedure for calculating the reduced elastic moduli, both in Navier-Bernoulli and Vlassov theories.

Citation: Patrick Ballard, Bernadette Miara. Formal asymptotic analysis of elastic beams and thin-walled beams: A derivation of the Vlassov equations and their generalization to the anisotropic heterogeneous case. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1547-1588. doi: 10.3934/dcdss.2019107
References:
[1]

C. DaviniL. Freddi and R. Paroni, Linear Models for Composite Thin-Walled Beams by $Γ$-Convergence. Part Ⅰ: Open Cross Sections, SIAM Journal on Mathematical Analysis, 46 (2014), 3296-3331.  doi: 10.1137/140951473.  Google Scholar

[2]

C. DaviniL. Freddi and R. Paroni, Linear Models for Composite Thin-Walled Beams by $Γ$-Convergence. Part Ⅱ: Closed Cross Sections, SIAM Journal on Mathematical Analysis, 46 (2014), p. 3332-3360.  doi: 10.1137/140964321.  Google Scholar

[3]

L. FreddiA. Morassi and R. Paroni, Thin-Walled Beams: The Case of the Rectangular Cross-Section, Journal of Elasticity, 76 (2004), 45-66.  doi: 10.1007/s10659-004-7193-z.  Google Scholar

[4]

L. FreddiA. Morassi and R. Paroni, Thin-walled beams: A derivation of Vlassov theory via $Γ$-convergence, Journal of Elasticity, 86 (2007), 263-296.  doi: 10.1007/s10659-006-9094-9.  Google Scholar

[5]

L. FreddiF. Murat and R. Paroni, Anisotropic Inhomogeneous Rectangular Thin-walled Beams, SIAM Journal on Mathematical Analysis, 40 (2009), 1923-1951.  doi: 10.1137/080720279.  Google Scholar

[6]

L. Grillet, A. Hamdouni and C. Allery, Modèle asymptotique linéaire de poutres voiles fortement courbés Comptes Rendus de l'Académie des Sciences, Paris, Série IIb, 328 (2000), 587-592. Google Scholar

[7]

A. Hamdouni and O. Millet, An asymptotic linear thin-walled rod model coupling twist and bending, International Applied Mechanics, 46 (2011), 1072-1092.  doi: 10.1007/s10778-011-0400-2.  Google Scholar

[8]

V. A. Kondrat'ev and O. A. Oleinik, On the dependence of the constant in Korn's inequality on parameters characterizing the geometry of the region, Russian Mathematical Surveys, 44 (1989), 187-195.   Google Scholar

[9]

H. Le Dret, Convergence of displacements and stresses in linearly elastic slender rods as the thickness goes to zero, Asymptotic Analysis, 10 (1995), 367-402.   Google Scholar

[10]

J. L. Lions, Perturbations Singulières dans les Problèmes aux Limites et en Contrȏle Optimal, Lecture Notes in Mathematics, Vol. 323, Springer-Verlag, Berlin, 1973.  Google Scholar

[11]

B. Miara and E. Sanchez-Palencia, Asymptotic analysis of linearly elastic shells, Asymptotic Analysis, 12 (1996), 41-54.   Google Scholar

[12]

D. Percivale, Thin elastic beams: The variational approach to St. Venant's problem, Asymptotic Analysis, 20 (1999), 39-59.   Google Scholar

[13]

J. Sanchez-Hubert and E. Sanchez-Palencia, Introduction aux Méthodes Asymptotiques et à L'homogéneisation, Masson, Paris, 1992. Google Scholar

[14]

I. S. Sokolnikoff, Mathematical Theory of Elasticity, McGraw-Hill, 1956.  Google Scholar

[15]

S. P. Timoshenko, De la stabilité à la flexion plane d ne poutre en double té, Nouvelles de l'Institut Polytechnique de Saint-Pétesbourg, T. - (1905-1906). Google Scholar

[16]

L. Trabucho and J. M. Viaño, Mathematical modelling of rods, In Handbook of Numerical Analysis, Volume IV, Elsevier, Amsterdam, 1996, 487-974.  Google Scholar

[17]

B. Z. Vlassov, Pièces Longues en Voiles Minces, Éditions Eyrolles, Paris, 1962. French translation of the Russian original book. Google Scholar

show all references

References:
[1]

C. DaviniL. Freddi and R. Paroni, Linear Models for Composite Thin-Walled Beams by $Γ$-Convergence. Part Ⅰ: Open Cross Sections, SIAM Journal on Mathematical Analysis, 46 (2014), 3296-3331.  doi: 10.1137/140951473.  Google Scholar

[2]

C. DaviniL. Freddi and R. Paroni, Linear Models for Composite Thin-Walled Beams by $Γ$-Convergence. Part Ⅱ: Closed Cross Sections, SIAM Journal on Mathematical Analysis, 46 (2014), p. 3332-3360.  doi: 10.1137/140964321.  Google Scholar

[3]

L. FreddiA. Morassi and R. Paroni, Thin-Walled Beams: The Case of the Rectangular Cross-Section, Journal of Elasticity, 76 (2004), 45-66.  doi: 10.1007/s10659-004-7193-z.  Google Scholar

[4]

L. FreddiA. Morassi and R. Paroni, Thin-walled beams: A derivation of Vlassov theory via $Γ$-convergence, Journal of Elasticity, 86 (2007), 263-296.  doi: 10.1007/s10659-006-9094-9.  Google Scholar

[5]

L. FreddiF. Murat and R. Paroni, Anisotropic Inhomogeneous Rectangular Thin-walled Beams, SIAM Journal on Mathematical Analysis, 40 (2009), 1923-1951.  doi: 10.1137/080720279.  Google Scholar

[6]

L. Grillet, A. Hamdouni and C. Allery, Modèle asymptotique linéaire de poutres voiles fortement courbés Comptes Rendus de l'Académie des Sciences, Paris, Série IIb, 328 (2000), 587-592. Google Scholar

[7]

A. Hamdouni and O. Millet, An asymptotic linear thin-walled rod model coupling twist and bending, International Applied Mechanics, 46 (2011), 1072-1092.  doi: 10.1007/s10778-011-0400-2.  Google Scholar

[8]

V. A. Kondrat'ev and O. A. Oleinik, On the dependence of the constant in Korn's inequality on parameters characterizing the geometry of the region, Russian Mathematical Surveys, 44 (1989), 187-195.   Google Scholar

[9]

H. Le Dret, Convergence of displacements and stresses in linearly elastic slender rods as the thickness goes to zero, Asymptotic Analysis, 10 (1995), 367-402.   Google Scholar

[10]

J. L. Lions, Perturbations Singulières dans les Problèmes aux Limites et en Contrȏle Optimal, Lecture Notes in Mathematics, Vol. 323, Springer-Verlag, Berlin, 1973.  Google Scholar

[11]

B. Miara and E. Sanchez-Palencia, Asymptotic analysis of linearly elastic shells, Asymptotic Analysis, 12 (1996), 41-54.   Google Scholar

[12]

D. Percivale, Thin elastic beams: The variational approach to St. Venant's problem, Asymptotic Analysis, 20 (1999), 39-59.   Google Scholar

[13]

J. Sanchez-Hubert and E. Sanchez-Palencia, Introduction aux Méthodes Asymptotiques et à L'homogéneisation, Masson, Paris, 1992. Google Scholar

[14]

I. S. Sokolnikoff, Mathematical Theory of Elasticity, McGraw-Hill, 1956.  Google Scholar

[15]

S. P. Timoshenko, De la stabilité à la flexion plane d ne poutre en double té, Nouvelles de l'Institut Polytechnique de Saint-Pétesbourg, T. - (1905-1906). Google Scholar

[16]

L. Trabucho and J. M. Viaño, Mathematical modelling of rods, In Handbook of Numerical Analysis, Volume IV, Elsevier, Amsterdam, 1996, 487-974.  Google Scholar

[17]

B. Z. Vlassov, Pièces Longues en Voiles Minces, Éditions Eyrolles, Paris, 1962. French translation of the Russian original book. Google Scholar

[1]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[2]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[3]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[4]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[5]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[6]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[7]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[8]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[9]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[10]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[11]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[12]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[13]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[14]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[15]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[16]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[17]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (157)
  • HTML views (432)
  • Cited by (0)

Other articles
by authors

[Back to Top]