• Previous Article
    Analysis of discretized parabolic problems modeling electrostatic micro-electromechanical systems
  • DCDS-S Home
  • This Issue
  • Next Article
    Formal asymptotic analysis of elastic beams and thin-walled beams: A derivation of the Vlassov equations and their generalization to the anisotropic heterogeneous case
October  2019, 12(6): 1589-1600. doi: 10.3934/dcdss.2019108

Magnetic forces in and on a magnet

Laboratoire de Génie électrique et électronique de Paris (GeePs), Universities UPMC and UPSud, Gif-sur-Yvette, France

Thanks to Alain Léger and Frédéric Bouillault for pointed questions

Received  January 2018 Revised  April 2018 Published  November 2018

Given the shape of a magnet and its magnetization, point by point, which force does it exert on itself, also point by point? We explain what 'force' means in such a context and how to define it by using the Virtual Power Principle. Mathematically speaking, this force is a vector-valued distribution, with Dirac-like concentrations on surfaces across which the magnetization is discontinuous, i.e., material interfaces. To find these concentrations, we express the force as the divergence of a (symmetric) 2-tensor which generalizes a little the classical Maxwell tensor.

Citation: Alain Bossavit. Magnetic forces in and on a magnet. Discrete and Continuous Dynamical Systems - S, 2019, 12 (6) : 1589-1600. doi: 10.3934/dcdss.2019108
References:
[1]

J. G. van Bladel, Unusual boundary conditions at an interface, IEEE A.P. Mag., 33 (1991), 57-58. 

[2]

A. Bossavit, Forces inside a magnet, Int. Compumag Soc. Newsletter, 11 (2004), 4-12. 

[3]

A. Bossavit, Bulk forces and interface forces in assemblies of magnetized pieces of matter, IEEE Trans. Magn., 52 (2016), Art. 7003504.

[4]

H. S. ChoiI. H. Park and S. H. Lee, Concept of virtual airgap and its application for forces computations, IEEE Trans. Magn., 42 (2006), 663-666. 

[5]

H. Gouin and J.-F. Debieve, Variational principle involving the stress tensor in elastodynamics, Int. J. Engng Sc., 24 (1986), 1057-1066. 

[6]

E. Kröner, Benefits and shortcomings of the continuous theory of dislocations, Int. J. Solids & Structures, 38 (2001), 1115-1134. 

[7]

A. R. Lee and T. M. Kalotas, A note on unconventional Gaussian surfaces, Am. J. Phys., 54 (1986), 753-754. 

[8]

J. E. Marsden and T. J. Hughes, Mathematical Foundations of Elasticity, Prentice Hall, Englewood Cliffs, 1983.

[9]

P. Penfield Jr., Hamilton's principle for fluids, Phys. Fluids, 9 (1966), 1184-1194. 

[10]

K. ReichertH. Freundl and W. Vogt, The calculation of forces and torques within numerical magnetic field calculation methods, Compumag, (1976), 64-73. 

[11]

W. G. V. Rosser, Classical Electromagnetism via Relativity, An Alternative Approach to Maxwell's Equations, Butterworths, London, 1968.

[12]

J. M. Souriau, Physics and geometry, Found. Phys., 13 (1983), 133-151.  doi: 10.1007/BF01889416.

[13]

A. N. WignallA. J. Gilbert and S. J. Yang, Calculation of forces on magnetised ferrous cores using the Maxwell stress tensor, IEEE Trans. Magn., 24 (1988), 459-462. 

show all references

References:
[1]

J. G. van Bladel, Unusual boundary conditions at an interface, IEEE A.P. Mag., 33 (1991), 57-58. 

[2]

A. Bossavit, Forces inside a magnet, Int. Compumag Soc. Newsletter, 11 (2004), 4-12. 

[3]

A. Bossavit, Bulk forces and interface forces in assemblies of magnetized pieces of matter, IEEE Trans. Magn., 52 (2016), Art. 7003504.

[4]

H. S. ChoiI. H. Park and S. H. Lee, Concept of virtual airgap and its application for forces computations, IEEE Trans. Magn., 42 (2006), 663-666. 

[5]

H. Gouin and J.-F. Debieve, Variational principle involving the stress tensor in elastodynamics, Int. J. Engng Sc., 24 (1986), 1057-1066. 

[6]

E. Kröner, Benefits and shortcomings of the continuous theory of dislocations, Int. J. Solids & Structures, 38 (2001), 1115-1134. 

[7]

A. R. Lee and T. M. Kalotas, A note on unconventional Gaussian surfaces, Am. J. Phys., 54 (1986), 753-754. 

[8]

J. E. Marsden and T. J. Hughes, Mathematical Foundations of Elasticity, Prentice Hall, Englewood Cliffs, 1983.

[9]

P. Penfield Jr., Hamilton's principle for fluids, Phys. Fluids, 9 (1966), 1184-1194. 

[10]

K. ReichertH. Freundl and W. Vogt, The calculation of forces and torques within numerical magnetic field calculation methods, Compumag, (1976), 64-73. 

[11]

W. G. V. Rosser, Classical Electromagnetism via Relativity, An Alternative Approach to Maxwell's Equations, Butterworths, London, 1968.

[12]

J. M. Souriau, Physics and geometry, Found. Phys., 13 (1983), 133-151.  doi: 10.1007/BF01889416.

[13]

A. N. WignallA. J. Gilbert and S. J. Yang, Calculation of forces on magnetised ferrous cores using the Maxwell stress tensor, IEEE Trans. Magn., 24 (1988), 459-462. 

Figure 1.  Notations for the 'pillbox trick'. The pillbox $\Sigma$ is a flat volume containing a part of $S$. The normal $n$ to $S$ goes from $D$ (magnetized region, here) to $D'$ (non-magnetized, air for instance). We reserve the square brackets, as here in $[M],$ to denote the jump of some quantity. The jump $[M]$ of the magnetization $M$ across surface $S$ is its value on the "upstream" side of $S$ minus its value on the "downstream" side, as both defined by the direction of the normal field $n$. Jumps of other vector or scalar quantities are defined similarly.
[1]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic and Related Models, 2015, 8 (1) : 153-168. doi: 10.3934/krm.2015.8.153

[2]

Youngae Lee. Topological solutions in the Maxwell-Chern-Simons model with anomalous magnetic moment. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1293-1314. doi: 10.3934/dcds.2018053

[3]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[4]

Matthias Eller. Stability of the anisotropic Maxwell equations with a conductivity term. Evolution Equations and Control Theory, 2019, 8 (2) : 343-357. doi: 10.3934/eect.2019018

[5]

Pierre-Damien Thizy. Klein-Gordon-Maxwell equations in high dimensions. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1097-1125. doi: 10.3934/cpaa.2015.14.1097

[6]

Thierry Colin, Boniface Nkonga. Multiscale numerical method for nonlinear Maxwell equations. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 631-658. doi: 10.3934/dcdsb.2005.5.631

[7]

Percy D. Makita. Nonradial solutions for the Klein-Gordon-Maxwell equations. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2271-2283. doi: 10.3934/dcds.2012.32.2271

[8]

Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257

[9]

Annalena Albicker, Roland Griesmaier. Monotonicity in inverse scattering for Maxwell's equations. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022032

[10]

Tian Ma, Shouhong Wang. Unified field equations coupling four forces and principle of interaction dynamics. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1103-1138. doi: 10.3934/dcds.2015.35.1103

[11]

Toan T. Nguyen, Truyen V. Nguyen, Walter A. Strauss. Erratum to: Global magnetic confinement for the 1.5D Vlasov-Maxwell system. Kinetic and Related Models, 2015, 8 (3) : 615-616. doi: 10.3934/krm.2015.8.615

[12]

Yuanjie Lei, Huijiang Zhao. The Vlasov-Maxwell-Boltzmann system near Maxwellians with strong background magnetic field. Kinetic and Related Models, 2020, 13 (3) : 599-621. doi: 10.3934/krm.2020020

[13]

Asim Aziz, Wasim Jamshed, Yasir Ali, Moniba Shams. Heat transfer and entropy analysis of Maxwell hybrid nanofluid including effects of inclined magnetic field, Joule heating and thermal radiation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2667-2690. doi: 10.3934/dcdss.2020142

[14]

Chenxi Guo, Guillaume Bal. Reconstruction of complex-valued tensors in the Maxwell system from knowledge of internal magnetic fields. Inverse Problems and Imaging, 2014, 8 (4) : 1033-1051. doi: 10.3934/ipi.2014.8.1033

[15]

Jin Woo Jang, Robert M. Strain, Tak Kwong Wong. Magnetic confinement for the 2D axisymmetric relativistic Vlasov-Maxwell system in an annulus. Kinetic and Related Models, 2022, 15 (4) : 569-604. doi: 10.3934/krm.2021039

[16]

Johannes Eilinghoff, Roland Schnaubelt. Error analysis of an ADI splitting scheme for the inhomogeneous Maxwell equations. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5685-5709. doi: 10.3934/dcds.2018248

[17]

Shijin Ding, Boling Guo, Junyu Lin, Ming Zeng. Global existence of weak solutions for Landau-Lifshitz-Maxwell equations. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 867-890. doi: 10.3934/dcds.2007.17.867

[18]

Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of time-domain Maxwell's equations in biperiodic structures. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 259-286. doi: 10.3934/dcdsb.2019181

[19]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[20]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations and Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (290)
  • HTML views (483)
  • Cited by (0)

Other articles
by authors

[Back to Top]