
-
Previous Article
Direct construction of symmetry-breaking directions in bifurcation problems with spherical symmetry
- DCDS-S Home
- This Issue
-
Next Article
Complex ray in anisotropic solids: Extended Fermat's principle
On the controllability of racing sailing boats with foils
1. | Département d'ingénierie mathématique, laboratoire M2N, 292, rue saint Martin, 75003 Paris, France |
2. | Laboratoire de mathématiques d'Orsay, UMR 8628, Univ Paris-Sud, CNRS, Université Paris-Saclay, Orsay 91405, France |
The development of foils for racing boats has changed the strategy of sailing. Recently, the America's cup held in San Francisco, has been the theatre of a tragicomic history due to the foils. During the last round, the New-Zealand boat was winning by 8 to 1 against the defender USA. The winner is the first with 9 victories. USA team understood suddenly (may be) how to use the control of the pitching of the main foils by adjusting the rake in order to stabilize the ship. And USA won by 9 victories against 8 to the challenger NZ. Our goal in this paper is to point out few aspects which could be taken into account in order to improve this mysterious control law which is known as the key of the victory of the USA team. There are certainly many reasons and in particular the cleverness of the sailors and of all the engineering team behind this project. But it appears interesting to have a mathematical discussion, even if it is a partial one, on the mechanical behaviour of these extraordinary sailing boats. The numerical examples given here are not the true ones. They have just been invented in order to explain the theoretical developments concerning three points: the possibility of tacking on the foils for sailing upwind, the nature of foiling instabilities, if there are, when the boat is flying and the control laws.
References:
[1] |
R. Bellman,
Dynamic Programming, Dover Publications, Inc., Mineola, NY, 2003. |
[2] |
H. Brezis,
Analyse Fonctionnelle, edition Masson, Paris, 1983. |
[3] |
J. Cea,
Optimisation, Théorie et Algorithmes, Dunod, Paris, 1971. |
[4] |
P.-G. Ciarlet,
Introduction à L'analyse Numérique et à L'optimisation, Masson, Paris, 1982. |
[5] |
Ph. Destuynder,
Introduction à L'aéroélasticité et à L'aéroacoustique, Hermès-Lavoisier, Paris-Londres, 2008. |
[6] |
Ph. Destuynder,
Analyse et Contrôle des Équations Différentielles, Hermès-Lavoisier, Paris-Londres, 2010. |
[7] |
Ph. Destuynder and C. Fabre,
Sailing boats with foils, To appear, 2017. |
[8] |
Ph. Destuynder and M. T. Ribereau,
Non linear dynamics of test models in wind tunnels, Eur. J. Mech. A/Solids, 15 (1996), 91-136.
|
[9] |
E. H. Dowell, H. C. Curtiss Jr., R. H. Scanlan and F. Sisto,
A Modern Course in Aeroelasticity, Monographs and textbooks of solids and fluids. Alphen aan den Rijn, Sijthoff and Noordhoff International Publishers, 1978. |
[10] |
A. Ducoin and Y.-L. Young, Hydroelastic response and stability of a hydrofoil in viscous flow,
in Journ. of Fluids and Structures, 38 (2013), 40–57. |
[11] |
Y. C. Fung,
An Introduction to the Theory of Aeroelasticity, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1955. |
[12] |
A. J. Hermans, G. C. Hsiao and R. Timman,
Water Waves and Ship Hydrodynamics, Delft University Press, The Netherlands, 1985.
doi: 10.1007/978-94-017-3657-2. |
[13] |
J. L. Lions,
Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Masson, Paris, 1988. |
[14] |
J. L. Lions,
Perturbations Singulères dans les Problèmes Aux Limites et en Contrôle Optimal, Springer-Verlag, Berlin-New York, 1973. |
show all references
References:
[1] |
R. Bellman,
Dynamic Programming, Dover Publications, Inc., Mineola, NY, 2003. |
[2] |
H. Brezis,
Analyse Fonctionnelle, edition Masson, Paris, 1983. |
[3] |
J. Cea,
Optimisation, Théorie et Algorithmes, Dunod, Paris, 1971. |
[4] |
P.-G. Ciarlet,
Introduction à L'analyse Numérique et à L'optimisation, Masson, Paris, 1982. |
[5] |
Ph. Destuynder,
Introduction à L'aéroélasticité et à L'aéroacoustique, Hermès-Lavoisier, Paris-Londres, 2008. |
[6] |
Ph. Destuynder,
Analyse et Contrôle des Équations Différentielles, Hermès-Lavoisier, Paris-Londres, 2010. |
[7] |
Ph. Destuynder and C. Fabre,
Sailing boats with foils, To appear, 2017. |
[8] |
Ph. Destuynder and M. T. Ribereau,
Non linear dynamics of test models in wind tunnels, Eur. J. Mech. A/Solids, 15 (1996), 91-136.
|
[9] |
E. H. Dowell, H. C. Curtiss Jr., R. H. Scanlan and F. Sisto,
A Modern Course in Aeroelasticity, Monographs and textbooks of solids and fluids. Alphen aan den Rijn, Sijthoff and Noordhoff International Publishers, 1978. |
[10] |
A. Ducoin and Y.-L. Young, Hydroelastic response and stability of a hydrofoil in viscous flow,
in Journ. of Fluids and Structures, 38 (2013), 40–57. |
[11] |
Y. C. Fung,
An Introduction to the Theory of Aeroelasticity, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1955. |
[12] |
A. J. Hermans, G. C. Hsiao and R. Timman,
Water Waves and Ship Hydrodynamics, Delft University Press, The Netherlands, 1985.
doi: 10.1007/978-94-017-3657-2. |
[13] |
J. L. Lions,
Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Masson, Paris, 1988. |
[14] |
J. L. Lions,
Perturbations Singulères dans les Problèmes Aux Limites et en Contrôle Optimal, Springer-Verlag, Berlin-New York, 1973. |



























Coefficient | Expression of the coefficients of the matrix |
| |
| |
| |
|
|
Coefficient | Expression of the coefficients of the matrix |
| |
| |
| |
|
|
[1] |
Lijuan Wang, Qishu Yan. Optimal control problem for exact synchronization of parabolic system. Mathematical Control and Related Fields, 2019, 9 (3) : 411-424. doi: 10.3934/mcrf.2019019 |
[2] |
Kazimierz Malanowski, Helmut Maurer. Sensitivity analysis for state constrained optimal control problems. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 241-272. doi: 10.3934/dcds.1998.4.241 |
[3] |
Bin Li, Kok Lay Teo, Cheng-Chew Lim, Guang Ren Duan. An optimal PID controller design for nonlinear constrained optimal control problems. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1101-1117. doi: 10.3934/dcdsb.2011.16.1101 |
[4] |
Lili Chang, Wei Gong, Guiquan Sun, Ningning Yan. PDE-constrained optimal control approach for the approximation of an inverse Cauchy problem. Inverse Problems and Imaging, 2015, 9 (3) : 791-814. doi: 10.3934/ipi.2015.9.791 |
[5] |
Piernicola Bettiol. State constrained $L^\infty$ optimal control problems interpreted as differential games. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3989-4017. doi: 10.3934/dcds.2015.35.3989 |
[6] |
Christian Clason, Barbara Kaltenbacher. Avoiding degeneracy in the Westervelt equation by state constrained optimal control. Evolution Equations and Control Theory, 2013, 2 (2) : 281-300. doi: 10.3934/eect.2013.2.281 |
[7] |
Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation. Journal of Industrial and Management Optimization, 2014, 10 (1) : 311-336. doi: 10.3934/jimo.2014.10.311 |
[8] |
Thalya Burden, Jon Ernstberger, K. Renee Fister. Optimal control applied to immunotherapy. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 135-146. doi: 10.3934/dcdsb.2004.4.135 |
[9] |
Ellina Grigorieva, Evgenii Khailov. Optimal control of pollution stock. Conference Publications, 2011, 2011 (Special) : 578-588. doi: 10.3934/proc.2011.2011.578 |
[10] |
Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial and Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967 |
[11] |
Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial and Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275 |
[12] |
Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021 |
[13] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[14] |
Changjun Yu, Shuxuan Su, Yanqin Bai. On the optimal control problems with characteristic time control constraints. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1305-1320. doi: 10.3934/jimo.2021021 |
[15] |
Klaus-Jochen Engel, Marjeta Kramar FijavŽ. Exact and positive controllability of boundary control systems. Networks and Heterogeneous Media, 2017, 12 (2) : 319-337. doi: 10.3934/nhm.2017014 |
[16] |
Jingshi Li, Jiachuan Zhang, Guoliang Ju, Juntao You. A multi-mode expansion method for boundary optimal control problems constrained by random Poisson equations. Electronic Research Archive, 2020, 28 (2) : 977-1000. doi: 10.3934/era.2020052 |
[17] |
Ciro D'Apice, Peter I. Kogut, Rosanna Manzo. On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks and Heterogeneous Media, 2014, 9 (3) : 501-518. doi: 10.3934/nhm.2014.9.501 |
[18] |
Clara Carlota, António Ornelas. The DuBois-Reymond differential inclusion for autonomous optimal control problems with pointwise-constrained derivatives. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 467-484. doi: 10.3934/dcds.2011.29.467 |
[19] |
Leonardo Colombo. Second-order constrained variational problems on Lie algebroids: Applications to Optimal Control. Journal of Geometric Mechanics, 2017, 9 (1) : 1-45. doi: 10.3934/jgm.2017001 |
[20] |
Ming Yan, Lili Chang, Ningning Yan. Finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs. Mathematical Control and Related Fields, 2012, 2 (2) : 183-194. doi: 10.3934/mcrf.2012.2.183 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]