Group | Invariant Spherical Harmonic Basis | Order |
$\mathbb{T}$ | $\mathcal{T}^s_6 \mathcal{T}^p_4 \mathcal{T}^q_3(1/r)\vert_{r=1}$ | $6s+4p+3q$ |
$\mathbb{O}$ | $\mathcal{O}_9^s \mathcal{O}^p_6 \mathcal{O}^q_4(1/r)\vert_{r=1}$ | $9s+6p+4q$ |
$\mathbb{I}$ | $\mathcal{I}_{15}^s\mathcal{I}^p_{10}\mathcal{I}^q_{6}(1/r)\vert_{r=1}$ | $15s+10p+6q$ |
$\mathbb{T}\oplus Z_2^c$ | $\mathcal{T}_6^s \mathcal{T}^{2p}_3 \mathcal{T}^q_4(1/r)\vert_{r=1}$ | $6s+6p+4q$ |
$\mathbb{O}\oplus Z_2^c$ | $\mathcal{O}^p_6 \mathcal{O}^q_4(1/r)\vert_{r=1}$ | $6p+4q$ |
$\mathbb{I}\oplus Z_2^c$ | $\mathcal{I}^p_{10}\mathcal{I}^q_{6}(1/r)\vert_{r=1}$ | $10p+6q$ |
$\mathbb{O}^{-}$ | $\mathcal{T}_4^p\mathcal{T}_3^q(1/r)\vert_{r=1}$ | $4p+3q$ |
$Z_n$ | $\hat{z}^p \mathcal{C}_{qn}(1/r)\vert_{r=1}$, $\hat{z}^p \mathcal{S}_{qn}(1/r)\vert_{r=1}$ | $p+qn$ |
$D_n$ | $\hat{z}^{2p} \mathcal{C}_{qn}(1/r)\vert_{r=1}$, $\hat{z}^{2p+1} \mathcal{S}_{qn}(1/r)\vert_{r=1}$ | $2p+qn$, $2p+1+qn$ (resp.) |
$D_n^z$ | $\hat{z}^{p}\mathcal{C}_{qn}(1/r)\vert_{r=1}$ | $p+qn$ |
$Z_{2n}^-$ (even $n$), $Z_n\oplus Z_2^c$ (odd $n$) | $\hat{z}^{2p+j} \mathcal{C}_{qn}(1/r)\vert_{r=1}$, $\hat{z}^{2p+j} \mathcal{S}_{qn}(1/r)\vert_{r=1}$, | $2p+j+qn$ |
where $j = qn (\text{ mod }2)$ | ||
$Z_{2n}^-$ (odd $n$), $Z_n\oplus Z_2^c$ (even $n$) | $\hat{z}^{2p} \mathcal{C}_{qn}(1/r)\vert_{r=1}$, $\hat{z}^{2p} \mathcal{S}_{qn}(1/r)\vert_{r=1}$ | $2p+qn$ |
$D_{2n}^d$ (even $n$), $D_n\oplus Z_2^c$ (odd $n$) | $\hat{z}^{2p}\mathcal{C}_{2qn}(1/r)\vert_{r=1}$, $\hat{z}^{2p+1}\mathcal{S}_{(2q+1)n}(1/r)\vert_{r=1}$ | $2p+2qn$, $2p+1+(2q+1)n$ (resp.) |
$D_{2n}^d$ (odd $n$), $D_n\oplus Z_2^c$ (even $n$) | $\hat{z}^{2p}\mathcal{C}_{qn}(1/r)\vert_{r=1}$ | $2p+qn$ |