
-
Previous Article
Topological remarks and new examples of persistence of diversity in biological dynamics
- DCDS-S Home
- This Issue
-
Next Article
POD basis interpolation via Inverse Distance Weighting on Grassmann manifolds
Dynamics of locally linearizable complex two dimensional cubic Hamiltonian systems
1. | Department of Mathematics and Computer Science, Chizhou University, Chizhou 274000, China |
2. | School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China |
3. | School of Mathematical Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China |
The aim of this paper is to characterize global dynamics of locally linearizable complex two dimensional cubic Hamiltonian systems. By finding invariants, we prove that their associated real phase space $\mathbb R^4$ is foliated by two dimensional invariant surfaces, which could be either simple connected, or double connected, or triple connected, or quadruple connected. On each of the invariant surfaces all regular orbits are heteroclinic ones, which connect two singularities, either both finite, or one finite and another at infinity, or both at infinity, and all these situations are realizable.
References:
[1] |
M. J. Alvarez, A. Gasull and R. Prohens,
Topological classification of polynomial complex differential equations with all the critical points of centre type, J. Difference Equ. Appl., 16 (2010), 411-423.
doi: 10.1080/10236190903232654. |
[2] |
V. I. Arnold, Ordinary Differential Equations, 3rd edition, Springer-Verlag, Berlin, 1992. |
[3] |
J. C. Artés and J. Llibre,
Quadratic Hamiltonian vector fields, J. Differential Equations, 107 (1994), 80-95.
doi: 10.1006/jdeq.1994.1004. |
[4] |
J. Chavarriga and M. Sabatini,
A survey of isochronous centers, Qual. Theory Dyn. Syst., 1 (1999), 1-70.
doi: 10.1007/BF02969404. |
[5] |
A. Cima and J. Llibre,
Bounded polynomial vector fields, Trans. Amer. Math. Soc., 318 (1990), 557-579.
doi: 10.1090/S0002-9947-1990-0998352-5. |
[6] |
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer, Berlin, 2006.
![]() ![]() |
[7] |
A. Garijo, A. Gasull and X. Jarque,
Local and global phase portrait of equation z' = f(z), Discrete Contin. Dyn. Syst., 17 (2007), 309-329.
doi: 10.3934/dcds.2007.17.309. |
[8] |
A. Gasull, J. Llibre and X. Zhang,
One-dimensional quaternion homogeneous polynomial differential equations, J. Math. Phys., 50 (2009), 082705, 17 pp.
doi: 10.1063/1.3139115. |
[9] |
L. M. Lerman and Ya. L. Umanskiy, Four-dimensional Integrable Hamiltonian Systems with
Simple Singular Points (Topological Aspects), Transl. Math. Monographs, American Math.
Soc., Providence, Rhode Island, 1998. |
[10] |
J. Llibre and V. G. Romanovski,
Isochronicity and linearizability of planar polynomial Hamiltonian systems, J. Differential Equations, 259 (2015), 1649-1662.
doi: 10.1016/j.jde.2015.03.009. |
[11] |
J. Llibre and C. Valls,
Darboux integrability of 2-dimensional Hamiltonian systems with homogenous potentials of degree 3, J. Math. Phys., 55 (2014), 033507, 12 pp.
doi: 10.1063/1.4868701. |
[12] |
J. Llibre and C. Valls,
Liouvillian first integrals for a class of generalized Liénard polynomial differential systems, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 1195-1210.
doi: 10.1017/S0308210515000906. |
[13] |
J. Llibre and X. Zhang,
On the Darboux integrability of polynomial differential systems, Qual. Theory Dyn. Syst., 11 (2012), 129-144.
doi: 10.1007/s12346-011-0053-x. |
[14] |
A.J. Maciejewski, M. Przybylska and H. Yoshida,
Necessary conditions for the existence of additional first integrals for Hamiltonian systems with homogeneous potential, Nonlinearity, 25 (2012), 255-277.
doi: 10.1088/0951-7715/25/2/255. |
[15] |
Y. P. Martnez and C. Vidal,
Classification of global phase portraits and bifurcation diagrams of Hamiltonian systems with rational potential, J. Differential Equations, 261 (2016), 5923-5948.
|
[16] |
V. G. Romanovski and D. S. Shafer,
The Center and Cyclicity Problems: A Computational Algebra Approach, Birkhäuser, Boston, 2009.
doi: 10.1007/978-0-8176-4727-8. |
[17] |
H. Shi, X. Zhang and Y. Zhang, Linearization and dynamics of complex planar Hamiltonian systems, Preprint. |
[18] |
C. Valls,
Rikitake system: Analytic and Darbouxian integrals, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 1309-1326.
doi: 10.1017/S030821050000439X. |
[19] |
X. Zhang,
Global structure of quaternion polynomial differential equations, Comm. Math. Phys., 303 (2011), 301-316.
doi: 10.1007/s00220-011-1196-y. |
[20] |
X. Zhang,
Integrability of Dynamical Systems: Algebra and Analysis, Springer, Singapore, 2017.
doi: 10.1007/978-981-10-4226-3. |
show all references
References:
[1] |
M. J. Alvarez, A. Gasull and R. Prohens,
Topological classification of polynomial complex differential equations with all the critical points of centre type, J. Difference Equ. Appl., 16 (2010), 411-423.
doi: 10.1080/10236190903232654. |
[2] |
V. I. Arnold, Ordinary Differential Equations, 3rd edition, Springer-Verlag, Berlin, 1992. |
[3] |
J. C. Artés and J. Llibre,
Quadratic Hamiltonian vector fields, J. Differential Equations, 107 (1994), 80-95.
doi: 10.1006/jdeq.1994.1004. |
[4] |
J. Chavarriga and M. Sabatini,
A survey of isochronous centers, Qual. Theory Dyn. Syst., 1 (1999), 1-70.
doi: 10.1007/BF02969404. |
[5] |
A. Cima and J. Llibre,
Bounded polynomial vector fields, Trans. Amer. Math. Soc., 318 (1990), 557-579.
doi: 10.1090/S0002-9947-1990-0998352-5. |
[6] |
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer, Berlin, 2006.
![]() ![]() |
[7] |
A. Garijo, A. Gasull and X. Jarque,
Local and global phase portrait of equation z' = f(z), Discrete Contin. Dyn. Syst., 17 (2007), 309-329.
doi: 10.3934/dcds.2007.17.309. |
[8] |
A. Gasull, J. Llibre and X. Zhang,
One-dimensional quaternion homogeneous polynomial differential equations, J. Math. Phys., 50 (2009), 082705, 17 pp.
doi: 10.1063/1.3139115. |
[9] |
L. M. Lerman and Ya. L. Umanskiy, Four-dimensional Integrable Hamiltonian Systems with
Simple Singular Points (Topological Aspects), Transl. Math. Monographs, American Math.
Soc., Providence, Rhode Island, 1998. |
[10] |
J. Llibre and V. G. Romanovski,
Isochronicity and linearizability of planar polynomial Hamiltonian systems, J. Differential Equations, 259 (2015), 1649-1662.
doi: 10.1016/j.jde.2015.03.009. |
[11] |
J. Llibre and C. Valls,
Darboux integrability of 2-dimensional Hamiltonian systems with homogenous potentials of degree 3, J. Math. Phys., 55 (2014), 033507, 12 pp.
doi: 10.1063/1.4868701. |
[12] |
J. Llibre and C. Valls,
Liouvillian first integrals for a class of generalized Liénard polynomial differential systems, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 1195-1210.
doi: 10.1017/S0308210515000906. |
[13] |
J. Llibre and X. Zhang,
On the Darboux integrability of polynomial differential systems, Qual. Theory Dyn. Syst., 11 (2012), 129-144.
doi: 10.1007/s12346-011-0053-x. |
[14] |
A.J. Maciejewski, M. Przybylska and H. Yoshida,
Necessary conditions for the existence of additional first integrals for Hamiltonian systems with homogeneous potential, Nonlinearity, 25 (2012), 255-277.
doi: 10.1088/0951-7715/25/2/255. |
[15] |
Y. P. Martnez and C. Vidal,
Classification of global phase portraits and bifurcation diagrams of Hamiltonian systems with rational potential, J. Differential Equations, 261 (2016), 5923-5948.
|
[16] |
V. G. Romanovski and D. S. Shafer,
The Center and Cyclicity Problems: A Computational Algebra Approach, Birkhäuser, Boston, 2009.
doi: 10.1007/978-0-8176-4727-8. |
[17] |
H. Shi, X. Zhang and Y. Zhang, Linearization and dynamics of complex planar Hamiltonian systems, Preprint. |
[18] |
C. Valls,
Rikitake system: Analytic and Darbouxian integrals, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 1309-1326.
doi: 10.1017/S030821050000439X. |
[19] |
X. Zhang,
Global structure of quaternion polynomial differential equations, Comm. Math. Phys., 303 (2011), 301-316.
doi: 10.1007/s00220-011-1196-y. |
[20] |
X. Zhang,
Integrability of Dynamical Systems: Algebra and Analysis, Springer, Singapore, 2017.
doi: 10.1007/978-981-10-4226-3. |


[1] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3295-3317. doi: 10.3934/dcds.2020406 |
[2] |
Fei Liu, Jaume Llibre, Xiang Zhang. Heteroclinic orbits for a class of Hamiltonian systems on Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1097-1111. doi: 10.3934/dcds.2011.29.1097 |
[3] |
Peter Albers, Urs Frauenfelder. Spectral invariants in Rabinowitz-Floer homology and global Hamiltonian perturbations. Journal of Modern Dynamics, 2010, 4 (2) : 329-357. doi: 10.3934/jmd.2010.4.329 |
[4] |
Daniel Wilczak. Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 1039-1055. doi: 10.3934/dcdsb.2009.11.1039 |
[5] |
Viktor L. Ginzburg, Başak Z. Gürel. On the generic existence of periodic orbits in Hamiltonian dynamics. Journal of Modern Dynamics, 2009, 3 (4) : 595-610. doi: 10.3934/jmd.2009.3.595 |
[6] |
Piotr Kokocki. Homotopy invariants methods in the global dynamics of strongly damped wave equation. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3227-3250. doi: 10.3934/dcds.2016.36.3227 |
[7] |
Răzvan M. Tudoran, Anania Gîrban. On the Hamiltonian dynamics and geometry of the Rabinovich system. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 789-823. doi: 10.3934/dcdsb.2011.15.789 |
[8] |
Junmin Yang, Maoan Han. On the number of limit cycles of a cubic Near-Hamiltonian system. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 827-840. doi: 10.3934/dcds.2009.24.827 |
[9] |
Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114 |
[10] |
Christopher K. R. T. Jones, Siu-Kei Tin. Generalized exchange lemmas and orbits heteroclinic to invariant manifolds. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 967-1023. doi: 10.3934/dcdss.2009.2.967 |
[11] |
Héctor E. Lomelí. Heteroclinic orbits and rotation sets for twist maps. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 343-354. doi: 10.3934/dcds.2006.14.343 |
[12] |
Anna Cima, Armengol Gasull, Francesc Mañosas. Global linearization of periodic difference equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1575-1595. doi: 10.3934/dcds.2012.32.1575 |
[13] |
Fatima Ezzahra Lembarki, Jaume Llibre. Periodic orbits for a generalized Friedmann-Robertson-Walker Hamiltonian system in dimension $6$. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1165-1211. doi: 10.3934/dcdss.2015.8.1165 |
[14] |
Zhipeng Qiu, Huaiping Zhu. Complex dynamics of a nutrient-plankton system with nonlinear phytoplankton mortality and allelopathy. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2703-2728. doi: 10.3934/dcdsb.2016069 |
[15] |
Kei Irie. Dense existence of periodic Reeb orbits and ECH spectral invariants. Journal of Modern Dynamics, 2015, 9: 357-363. doi: 10.3934/jmd.2015.9.357 |
[16] |
Kingshook Biswas. Complete conjugacy invariants of nonlinearizable holomorphic dynamics. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 847-856. doi: 10.3934/dcds.2010.26.847 |
[17] |
George Papadopoulos, Holger R. Dullin. Semi-global symplectic invariants of the Euler top. Journal of Geometric Mechanics, 2013, 5 (2) : 215-232. doi: 10.3934/jgm.2013.5.215 |
[18] |
Tifei Qian, Zhihong Xia. Heteroclinic orbits and chaotic invariant sets for monotone twist maps. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 69-95. doi: 10.3934/dcds.2003.9.69 |
[19] |
Guowei Yu. Ray and heteroclinic solutions of Hamiltonian systems with 2 degrees of freedom. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4769-4793. doi: 10.3934/dcds.2013.33.4769 |
[20] |
Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]