November  2019, 12(7): 1835-1839. doi: 10.3934/dcdss.2019120

On a degree associated with the Gross-Pitaevskii system with a large parameter

School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia

Received  November 2017 Revised  July 2018 Published  December 2018

Fund Project: Partially supported by the Australian Research Council.

In a number of cases we calculate the sum of the degrees of the small positive solutions of the Gross-Pitaevskii system when the interaction is strong.

Citation: E. Norman Dancer. On a degree associated with the Gross-Pitaevskii system with a large parameter. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1835-1839. doi: 10.3934/dcdss.2019120
References:
[1]

E. N. Dancer, On the Dirichlet problem for weakly non-linear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 76 (1976/77), 283-300.  doi: 10.1017/S0308210500019648.  Google Scholar

[2]

______, On the converse problem for the Gross-Pitaevskii equations with a large parameter, Discrete Contin. Dyn. Syst., 34 (2014), 2481-2493. doi: 10.3934/dcds.2014.34.2481.  Google Scholar

[3]

E. N. Dancer and Y. Du, Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differential Equations, 114 (1994), 434-475.  doi: 10.1006/jdeq.1994.1156.  Google Scholar

[4]

E. N. DancerK. Wang and Z. Zhang, The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture, J. Funct. Anal., 262 (2012), 1087-1131.  doi: 10.1016/j.jfa.2011.10.013.  Google Scholar

[5]

S. Fučík, Boundary value problems with jumping nonlinearities, Časopis Pěst. Mat., 101 (1976), 69-87.  Google Scholar

[6]

B. NorisH. TavaresS. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure Appl. Math., 63 (2010), 267-302.  doi: 10.1002/cpa.20309.  Google Scholar

[7]

R. D. Nussbaum, Some generalizations of the Borsuk-Ulam theorem, Proc. London Math. Soc., (3), 35 (1977), 136-158. doi: 10.1112/plms/s3-35.1.136.  Google Scholar

show all references

References:
[1]

E. N. Dancer, On the Dirichlet problem for weakly non-linear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 76 (1976/77), 283-300.  doi: 10.1017/S0308210500019648.  Google Scholar

[2]

______, On the converse problem for the Gross-Pitaevskii equations with a large parameter, Discrete Contin. Dyn. Syst., 34 (2014), 2481-2493. doi: 10.3934/dcds.2014.34.2481.  Google Scholar

[3]

E. N. Dancer and Y. Du, Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differential Equations, 114 (1994), 434-475.  doi: 10.1006/jdeq.1994.1156.  Google Scholar

[4]

E. N. DancerK. Wang and Z. Zhang, The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture, J. Funct. Anal., 262 (2012), 1087-1131.  doi: 10.1016/j.jfa.2011.10.013.  Google Scholar

[5]

S. Fučík, Boundary value problems with jumping nonlinearities, Časopis Pěst. Mat., 101 (1976), 69-87.  Google Scholar

[6]

B. NorisH. TavaresS. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure Appl. Math., 63 (2010), 267-302.  doi: 10.1002/cpa.20309.  Google Scholar

[7]

R. D. Nussbaum, Some generalizations of the Borsuk-Ulam theorem, Proc. London Math. Soc., (3), 35 (1977), 136-158. doi: 10.1112/plms/s3-35.1.136.  Google Scholar

[1]

Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315

[2]

Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282

[3]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[4]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[5]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[6]

Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021027

[7]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[8]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[9]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[10]

Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040

[11]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[12]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[13]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[14]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[15]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281

[16]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[17]

Yukio Kan-On. On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3561-3570. doi: 10.3934/dcds.2020161

[18]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[19]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[20]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (132)
  • HTML views (365)
  • Cited by (0)

Other articles
by authors

[Back to Top]