November  2019, 12(7): 1841-1850. doi: 10.3934/dcdss.2019121

Subharmonic solutions for a class of Lagrangian systems

1. 

Department of Mathematics, Faculty of Sciences, University of Monastir, 5019 Monastir, Tunisia

2. 

Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

* Corresponding author: Marek Izydorek

Received  April 2018 Revised  May 2018 Published  December 2018

Fund Project: M. Izydorek and J. Janczewska are supported by Grant BEETHOVEN2 of the National Science Centre, Poland, no. 2016/23/G/ST1/04081.

We prove that second order Hamiltonian systems $ -\ddot{u} = V_{u}(t,u) $ with a potential $ V\colon \mathbb{R} \times \mathbb{R} ^N\to \mathbb{R} $ of class $ C^1 $, periodic in time and superquadratic at infinity with respect to the space variable have subharmonic solutions. Our intention is to generalise a result on subharmonics for Hamiltonian systems with a potential satisfying the global Ambrosetti-Rabinowitz condition from [14]. Indeed, we weaken the latter condition in a neighbourhood of $ 0\in \mathbb{R} ^N $. We will also discuss when subharmonics pass to a nontrivial homoclinic orbit.

Citation: Anouar Bahrouni, Marek Izydorek, Joanna Janczewska. Subharmonic solutions for a class of Lagrangian systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1841-1850. doi: 10.3934/dcdss.2019121
References:
[1]

A. Abbondandolo, Morse Theory for Hamiltonian Systems, Chapman and Hall/CRC Research Notes in Mathematics 425, Chapman and Hall/CRC, Boca Raton, FL, 2001.  Google Scholar

[2]

A. Ambrosetti and V. Coti Zelati, Periodic Solutions of Singular Lagrangian Systems, Progr. Nonlinear Differential Equations Appl. 10, Birkh ser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0319-3.  Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[4]

K. Ch. Chang, Infinite-Dimensional Morse Theory and Multiple Solution Problems, Progr. Nonlinear Differential Equations Appl. 6, Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0385-8.  Google Scholar

[5]

J. CiesielskiJ. Janczewska and N. Waterstraat, On the existence of homoclinic type solutions of inhomogenous Lagrangian systems, Differential and Integral Equations, 30 (2017), 259-272.   Google Scholar

[6]

K. GębaM. Izydorek and A. Pruszko, The Conley index in Hilbert spaces and its applications, Studia Math., 134 (1999), 217-233.   Google Scholar

[7]

M. Izydorek, A cohomological Conley index in Hilbert spaces and applications to strongly indefinite problems, J. Differential Equations, 170 (2001), 22-50.  doi: 10.1006/jdeq.2000.3818.  Google Scholar

[8]

M. Izydorek, Equivariant Conley index in Hilbert spaces and applications to strongly indefinite problems, Nonl. Analysis Ser. A: Theory Methods, 51 (2002), 33-66.  doi: 10.1016/S0362-546X(01)00811-2.  Google Scholar

[9]

M. Izydorek and J. Janczewska, Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 219 (2005), 375-389.  doi: 10.1016/j.jde.2005.06.029.  Google Scholar

[10]

M. Izydorek and J. Janczewska, The shadowing chain lemma for singular Hamiltonian systems involving strong forces, Cent. Eur. J. Math., 10 (2012), 1928-1939.  doi: 10.2478/s11533-012-0107-6.  Google Scholar

[11]

J. Janczewska, An approximative scheme of finding almost homoclinic solutions for a class of Newtonian systems, Topol. Methods Nonlinear Anal., 33 (2009), 169-177.  doi: 10.12775/TMNA.2009.012.  Google Scholar

[12]

J. Janczewska, Homoclinic solutions for a class of autonomous second order Hamiltonian systems with a superquadratic potential, Topol. Methods Nonlinear Anal., 36 (2010), 19-26.   Google Scholar

[13]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Appl. Math. Sci. 74, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2061-7.  Google Scholar

[14]

P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 33-38.  doi: 10.1017/S0308210500024240.  Google Scholar

[15]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics 65, Amer. Math. Soc., Providence, RI, 1986. doi: 10.1090/cbms/065.  Google Scholar

[16]

E. Serra, M. Tarallo and S. Terracini, On the existence of homoclinic solutions for almost periodic second order systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 783-812. doi: 10.1016/S0294-1449(16)30123-8.  Google Scholar

[17]

K. Tanaka, Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 427-438. doi: 10.1016/S0294-1449(16)30285-2.  Google Scholar

show all references

References:
[1]

A. Abbondandolo, Morse Theory for Hamiltonian Systems, Chapman and Hall/CRC Research Notes in Mathematics 425, Chapman and Hall/CRC, Boca Raton, FL, 2001.  Google Scholar

[2]

A. Ambrosetti and V. Coti Zelati, Periodic Solutions of Singular Lagrangian Systems, Progr. Nonlinear Differential Equations Appl. 10, Birkh ser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0319-3.  Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[4]

K. Ch. Chang, Infinite-Dimensional Morse Theory and Multiple Solution Problems, Progr. Nonlinear Differential Equations Appl. 6, Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0385-8.  Google Scholar

[5]

J. CiesielskiJ. Janczewska and N. Waterstraat, On the existence of homoclinic type solutions of inhomogenous Lagrangian systems, Differential and Integral Equations, 30 (2017), 259-272.   Google Scholar

[6]

K. GębaM. Izydorek and A. Pruszko, The Conley index in Hilbert spaces and its applications, Studia Math., 134 (1999), 217-233.   Google Scholar

[7]

M. Izydorek, A cohomological Conley index in Hilbert spaces and applications to strongly indefinite problems, J. Differential Equations, 170 (2001), 22-50.  doi: 10.1006/jdeq.2000.3818.  Google Scholar

[8]

M. Izydorek, Equivariant Conley index in Hilbert spaces and applications to strongly indefinite problems, Nonl. Analysis Ser. A: Theory Methods, 51 (2002), 33-66.  doi: 10.1016/S0362-546X(01)00811-2.  Google Scholar

[9]

M. Izydorek and J. Janczewska, Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 219 (2005), 375-389.  doi: 10.1016/j.jde.2005.06.029.  Google Scholar

[10]

M. Izydorek and J. Janczewska, The shadowing chain lemma for singular Hamiltonian systems involving strong forces, Cent. Eur. J. Math., 10 (2012), 1928-1939.  doi: 10.2478/s11533-012-0107-6.  Google Scholar

[11]

J. Janczewska, An approximative scheme of finding almost homoclinic solutions for a class of Newtonian systems, Topol. Methods Nonlinear Anal., 33 (2009), 169-177.  doi: 10.12775/TMNA.2009.012.  Google Scholar

[12]

J. Janczewska, Homoclinic solutions for a class of autonomous second order Hamiltonian systems with a superquadratic potential, Topol. Methods Nonlinear Anal., 36 (2010), 19-26.   Google Scholar

[13]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Appl. Math. Sci. 74, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2061-7.  Google Scholar

[14]

P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 33-38.  doi: 10.1017/S0308210500024240.  Google Scholar

[15]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics 65, Amer. Math. Soc., Providence, RI, 1986. doi: 10.1090/cbms/065.  Google Scholar

[16]

E. Serra, M. Tarallo and S. Terracini, On the existence of homoclinic solutions for almost periodic second order systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 783-812. doi: 10.1016/S0294-1449(16)30123-8.  Google Scholar

[17]

K. Tanaka, Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 427-438. doi: 10.1016/S0294-1449(16)30285-2.  Google Scholar

[1]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021010

[2]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[3]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[4]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[5]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[6]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[7]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[8]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[9]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[10]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[11]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[12]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[13]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020404

[14]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[15]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[16]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[17]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[18]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[19]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[20]

Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351

2019 Impact Factor: 1.233

Article outline

[Back to Top]