November  2019, 12(7): 1955-1975. doi: 10.3934/dcdss.2019127

Branching and bifurcation

1. 

Department of Mathematics, University of Maryland, 4176 Campus Dr, College Park, MD 20742, USA

2. 

INDAM, Dipartimento di Scienze Matematiche, Politecnico di Torino, Duca degli Abruzzi 24, 10129 Torino, Italy

* Corresponding author

Dedicated to Norman Dancer

Received  January 2018 Revised  August 2018 Published  December 2018

Fund Project: J. Pejsachowicz is supported by GNAMPA-INDAM.

By relating the set of branch points $ \mathcal{B} (f) $ of a Fredholm mapping $ f $ to linearized bifurcation, we show, among other things, that under mild local assumptions at a single point, the set $ \mathcal B(f) $ is sufficiently large to separate the domain of the mapping. In the variational case, we will also provide estimates from below for the number of connected components of the complement of $ \mathcal B(f). $

Citation: Patrick M. Fitzpatrick, Jacobo Pejsachowicz. Branching and bifurcation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1955-1975. doi: 10.3934/dcdss.2019127
References:
[1]

R. Abraham and J. Robbin, Transversal Mappings and Flows, W. A. Benjamin, New York/Amsterdam, 1967.  Google Scholar

[2]

J. C. Alexander, Bifurcation of zeroes of parametrized functions, J. of Funct. Anal, 29 (1978), 37-53. doi: 10.1016/0022-1236(78)90045-9.  Google Scholar

[3] A. Ambrosetti and G. Prodi, A primer of Nonlinear Analysis, Cambridge U. Press, 1993.   Google Scholar
[4]

S. B. Angenent and R. Vandervorst, A priori bounds and renormalized Morse indices of solutions of an elliptic system, Ann. Inst. Poincaré, Analyse non linéaire, 17 (2000), 277-306.  doi: 10.1016/S0294-1449(00)00110-4.  Google Scholar

[5]

S. B. Angenent and R. Vandervorst, A superquadratic indefinite elliptic system and its Morse-Conley-Floer homology, Math. Zeichr., 231 (1999), 203-248.  doi: 10.1007/PL00004731.  Google Scholar

[6]

M. F. AtiyahV. K. Patodi. and I. M. Singer, Spectral Asymmetry and Riemannian Geometry Ⅲ, Proc. Cambridge Philos. Soc., 79 (1976), 71-99.  doi: 10.1017/S0305004100052105.  Google Scholar

[7]

A. Bahri and P. L. Lions, Solutions of superlinear elliptic equations and their Morse indices, Comm. Pure Appl. Math., 45 (1992), 1205-1215.  doi: 10.1002/cpa.3160450908.  Google Scholar

[8]

A. Bahri and P. L. Lions, Morse-index of some min-max critical points. I. Application to multiplicity results, Comm. Pure Appl. Math., 41 (1988), 1027-1037. doi: 10.1002/cpa.3160410803.  Google Scholar

[9]

P. Benevieri and M. Furi, A simple notion of orientability for Fredholm maps of index zero between Banach manifolds and degree, Ann. Sci. Math. Québec, 22 (1998), 131-148.   Google Scholar

[10]

M. S. Berger and R. A. Plastock, On the singularities of nonlinear Fredholm operators, Bull. Amer. Math. Soc., 83 (1977), 1316-1318.  doi: 10.1090/S0002-9904-1977-14431-5.  Google Scholar

[11]

G. Borisovich, I. Sapronov and V. G. Zvyagin, Nonlinear Fredholm maps and Leray-Schauder theory, Russian Math. Surveys, 32 (1977), 3-54.  Google Scholar

[12]

R. Caccioppoli, Sulle corrispondenze funzionali inverse diramate: Teoria generale e applicazioni ad alcune equazioni funzionali nonlineari e al problema di Plateau, Ⅰ, Ⅱ, Rend. Accad. Naz. Lincei, 24 (1936), 258-263,416-421, Opere Scelte, Vol 2, Edizioni Cremonese, Roma. Google Scholar

[13]

P. T. Church, E. N. Dancer and J. G. Timourian, The structure of a nonlinear elliptic operator, Trans. Amer. Math. Soc., 338 (1993), 1-42. doi: 10.1090/S0002-9947-1993-1124165-2.  Google Scholar

[14]

P. T. Church and J. G. Timourian, Global fold maps in differential and integral equations, Nonlinear Analysis: Theory, Methods & Applications 18 (1992), 743-758. doi: 10.1016/0362-546X(92)90169-F.  Google Scholar

[15]

K. D. Elworthy and A. J. Tromba, Degree theory on Banach manifolds, Nonlinear Functional Analysis, Proc. Sympos. Pure Math., ⅩⅧ (1970), 8-94.   Google Scholar

[16]

P. M. Fitzpatrick, Homotopy, linearization, and bifurcation, Nonlinear Anal., 12 (1988), 171-184.  doi: 10.1016/0362-546X(88)90033-8.  Google Scholar

[17]

P. M. Fitzpatrick and J. Pejsachowicz, Parity and generalized multiplicity, Trans. Amer. Math. Soc., 326 (1991), 281-305. doi: 10.1090/S0002-9947-1991-1030507-7.  Google Scholar

[18]

P. M. Fitzpatrick, J. Pejsachowicz and C. A. Stuart, Spectral flow for paths of unbounded operators and bifurcation of critical points, preprint, 2004. Google Scholar

[19]

P. M. Fitzpatrick, J. Pejsachowicz and P. Rabier, Degree theory for proper C2-Fredholm maps, J. Reine Angew. Math., 427 (1992), 1-33.  Google Scholar

[20]

P. M. FitzpatrickJ. Pejsachowicz and L. Recht, Spectral flow and bifurcation of critical points of strongly-indefinite functionals-part Ⅰ : General theory, J. Funct. Anal., 162 (1999), 52-95.  doi: 10.1006/jfan.1998.3366.  Google Scholar

[21]

A. Floer, An instanton invariant for 3-manifolds, Comun. Math. Physics, 118 (1988), 215-240.  doi: 10.1007/BF01218578.  Google Scholar

[22]

D. Henderson, Infinite dimensional manifolds are open subsets of Hilbert space, Bull. Amer. Math. Soc., 75 (1969), 759-762.  doi: 10.1090/S0002-9904-1969-12276-7.  Google Scholar

[23]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonial Systems, Springer-Verlag, 1989. doi: 10.1007/978-1-4757-2061-7.  Google Scholar

[24] J. Milnor, Topology from Differentiable View-Point, Princeton University Press, Princeton, NJ, 1997.   Google Scholar
[25]

L. Nicolaescu, The Maslov index, the spectral flow and decompositions of manifolds, C.R.Acad.Sci.Paris, 317 (1993), 515-519.   Google Scholar

[26]

J. Pejsachowicz and P. J. Rabier, Degree theory for C1-Fredholm mappings of index 0, Journal d'Analyse Mathematique, 76 (1998), 289-319. doi: 10.1007/BF02786939.  Google Scholar

[27]

J. Pejsachowicz and N. Waterstraat, Bifurcation of critical points for continuous families of C2-functionals of Fredholm type, Journal of Fixed Point Theory and Applications, 13 (2013), 537-560.  doi: 10.1007/s11784-013-0137-0.  Google Scholar

[28]

J. Phillips, Self-adjoint fredholm operators and spectral flow, Canad. Math. Bull., 39 (1996), 460-467.  doi: 10.4153/CMB-1996-054-4.  Google Scholar

[29]

J. Robbin and D. Salamon, The spectral flow and the maslov index, Bull. London Math. Soc., 27 (1995), 1-33.  doi: 10.1112/blms/27.1.1.  Google Scholar

[30]

H. L. Smith and C. A. Stuart, A uniqueness theorem for fixed points, Proc. Amer. Math. Soc., 79 (1980), 237-240.  doi: 10.1090/S0002-9939-1980-0565346-2.  Google Scholar

[31]

A. Szulkin, Bifurcation for strongly indefinite functionals and a Liapunov type theorem for Hamiltonian systems, J. Differential Integral Equations, 7 (1994), 217-234.   Google Scholar

[32]

K. Tanaka, Morse indices at critical points related to the symmetric mountain pass theorem and applications, Commun. Partial Differ. Equ., 14 (1989), 99-128. doi: 10.1080/03605308908820592.  Google Scholar

[33]

A. J. Tromba, Some theorems on Fredholm maps, Proc. Amer. Math. Soc., 34 (1972), 578-585.  doi: 10.1090/S0002-9939-1972-0298713-0.  Google Scholar

[34]

N. Waterstraat, Spectral flow and bifurcation for a class of strongly indefinite elliptic systems, Proc. Roy. Soc. Edinburgh Sect. A, 148 (2018), 1097-1113, arXiv: 1512.04109 [math. AP] doi: 10.1017/S0308210517000324.  Google Scholar

show all references

References:
[1]

R. Abraham and J. Robbin, Transversal Mappings and Flows, W. A. Benjamin, New York/Amsterdam, 1967.  Google Scholar

[2]

J. C. Alexander, Bifurcation of zeroes of parametrized functions, J. of Funct. Anal, 29 (1978), 37-53. doi: 10.1016/0022-1236(78)90045-9.  Google Scholar

[3] A. Ambrosetti and G. Prodi, A primer of Nonlinear Analysis, Cambridge U. Press, 1993.   Google Scholar
[4]

S. B. Angenent and R. Vandervorst, A priori bounds and renormalized Morse indices of solutions of an elliptic system, Ann. Inst. Poincaré, Analyse non linéaire, 17 (2000), 277-306.  doi: 10.1016/S0294-1449(00)00110-4.  Google Scholar

[5]

S. B. Angenent and R. Vandervorst, A superquadratic indefinite elliptic system and its Morse-Conley-Floer homology, Math. Zeichr., 231 (1999), 203-248.  doi: 10.1007/PL00004731.  Google Scholar

[6]

M. F. AtiyahV. K. Patodi. and I. M. Singer, Spectral Asymmetry and Riemannian Geometry Ⅲ, Proc. Cambridge Philos. Soc., 79 (1976), 71-99.  doi: 10.1017/S0305004100052105.  Google Scholar

[7]

A. Bahri and P. L. Lions, Solutions of superlinear elliptic equations and their Morse indices, Comm. Pure Appl. Math., 45 (1992), 1205-1215.  doi: 10.1002/cpa.3160450908.  Google Scholar

[8]

A. Bahri and P. L. Lions, Morse-index of some min-max critical points. I. Application to multiplicity results, Comm. Pure Appl. Math., 41 (1988), 1027-1037. doi: 10.1002/cpa.3160410803.  Google Scholar

[9]

P. Benevieri and M. Furi, A simple notion of orientability for Fredholm maps of index zero between Banach manifolds and degree, Ann. Sci. Math. Québec, 22 (1998), 131-148.   Google Scholar

[10]

M. S. Berger and R. A. Plastock, On the singularities of nonlinear Fredholm operators, Bull. Amer. Math. Soc., 83 (1977), 1316-1318.  doi: 10.1090/S0002-9904-1977-14431-5.  Google Scholar

[11]

G. Borisovich, I. Sapronov and V. G. Zvyagin, Nonlinear Fredholm maps and Leray-Schauder theory, Russian Math. Surveys, 32 (1977), 3-54.  Google Scholar

[12]

R. Caccioppoli, Sulle corrispondenze funzionali inverse diramate: Teoria generale e applicazioni ad alcune equazioni funzionali nonlineari e al problema di Plateau, Ⅰ, Ⅱ, Rend. Accad. Naz. Lincei, 24 (1936), 258-263,416-421, Opere Scelte, Vol 2, Edizioni Cremonese, Roma. Google Scholar

[13]

P. T. Church, E. N. Dancer and J. G. Timourian, The structure of a nonlinear elliptic operator, Trans. Amer. Math. Soc., 338 (1993), 1-42. doi: 10.1090/S0002-9947-1993-1124165-2.  Google Scholar

[14]

P. T. Church and J. G. Timourian, Global fold maps in differential and integral equations, Nonlinear Analysis: Theory, Methods & Applications 18 (1992), 743-758. doi: 10.1016/0362-546X(92)90169-F.  Google Scholar

[15]

K. D. Elworthy and A. J. Tromba, Degree theory on Banach manifolds, Nonlinear Functional Analysis, Proc. Sympos. Pure Math., ⅩⅧ (1970), 8-94.   Google Scholar

[16]

P. M. Fitzpatrick, Homotopy, linearization, and bifurcation, Nonlinear Anal., 12 (1988), 171-184.  doi: 10.1016/0362-546X(88)90033-8.  Google Scholar

[17]

P. M. Fitzpatrick and J. Pejsachowicz, Parity and generalized multiplicity, Trans. Amer. Math. Soc., 326 (1991), 281-305. doi: 10.1090/S0002-9947-1991-1030507-7.  Google Scholar

[18]

P. M. Fitzpatrick, J. Pejsachowicz and C. A. Stuart, Spectral flow for paths of unbounded operators and bifurcation of critical points, preprint, 2004. Google Scholar

[19]

P. M. Fitzpatrick, J. Pejsachowicz and P. Rabier, Degree theory for proper C2-Fredholm maps, J. Reine Angew. Math., 427 (1992), 1-33.  Google Scholar

[20]

P. M. FitzpatrickJ. Pejsachowicz and L. Recht, Spectral flow and bifurcation of critical points of strongly-indefinite functionals-part Ⅰ : General theory, J. Funct. Anal., 162 (1999), 52-95.  doi: 10.1006/jfan.1998.3366.  Google Scholar

[21]

A. Floer, An instanton invariant for 3-manifolds, Comun. Math. Physics, 118 (1988), 215-240.  doi: 10.1007/BF01218578.  Google Scholar

[22]

D. Henderson, Infinite dimensional manifolds are open subsets of Hilbert space, Bull. Amer. Math. Soc., 75 (1969), 759-762.  doi: 10.1090/S0002-9904-1969-12276-7.  Google Scholar

[23]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonial Systems, Springer-Verlag, 1989. doi: 10.1007/978-1-4757-2061-7.  Google Scholar

[24] J. Milnor, Topology from Differentiable View-Point, Princeton University Press, Princeton, NJ, 1997.   Google Scholar
[25]

L. Nicolaescu, The Maslov index, the spectral flow and decompositions of manifolds, C.R.Acad.Sci.Paris, 317 (1993), 515-519.   Google Scholar

[26]

J. Pejsachowicz and P. J. Rabier, Degree theory for C1-Fredholm mappings of index 0, Journal d'Analyse Mathematique, 76 (1998), 289-319. doi: 10.1007/BF02786939.  Google Scholar

[27]

J. Pejsachowicz and N. Waterstraat, Bifurcation of critical points for continuous families of C2-functionals of Fredholm type, Journal of Fixed Point Theory and Applications, 13 (2013), 537-560.  doi: 10.1007/s11784-013-0137-0.  Google Scholar

[28]

J. Phillips, Self-adjoint fredholm operators and spectral flow, Canad. Math. Bull., 39 (1996), 460-467.  doi: 10.4153/CMB-1996-054-4.  Google Scholar

[29]

J. Robbin and D. Salamon, The spectral flow and the maslov index, Bull. London Math. Soc., 27 (1995), 1-33.  doi: 10.1112/blms/27.1.1.  Google Scholar

[30]

H. L. Smith and C. A. Stuart, A uniqueness theorem for fixed points, Proc. Amer. Math. Soc., 79 (1980), 237-240.  doi: 10.1090/S0002-9939-1980-0565346-2.  Google Scholar

[31]

A. Szulkin, Bifurcation for strongly indefinite functionals and a Liapunov type theorem for Hamiltonian systems, J. Differential Integral Equations, 7 (1994), 217-234.   Google Scholar

[32]

K. Tanaka, Morse indices at critical points related to the symmetric mountain pass theorem and applications, Commun. Partial Differ. Equ., 14 (1989), 99-128. doi: 10.1080/03605308908820592.  Google Scholar

[33]

A. J. Tromba, Some theorems on Fredholm maps, Proc. Amer. Math. Soc., 34 (1972), 578-585.  doi: 10.1090/S0002-9939-1972-0298713-0.  Google Scholar

[34]

N. Waterstraat, Spectral flow and bifurcation for a class of strongly indefinite elliptic systems, Proc. Roy. Soc. Edinburgh Sect. A, 148 (2018), 1097-1113, arXiv: 1512.04109 [math. AP] doi: 10.1017/S0308210517000324.  Google Scholar

[1]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[2]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[3]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[4]

Liqun Qi, Shenglong Hu, Yanwei Xu. Spectral norm and nuclear norm of a third order tensor. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021010

[5]

Bingyan Liu, Xiongbing Ye, Xianzhou Dong, Lei Ni. Branching improved Deep Q Networks for solving pursuit-evasion strategy solution of spacecraft. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021016

[6]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[7]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[8]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[9]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021005

[10]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[11]

Yiwen Tao, Jingli Ren. The stability and bifurcation of homogeneous diffusive predator–prey systems with spatio–temporal delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021038

[12]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[13]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

[14]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[15]

Joan Carles Tatjer, Arturo Vieiro. Dynamics of the QR-flow for upper Hessenberg real matrices. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1359-1403. doi: 10.3934/dcdsb.2020166

[16]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[17]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[18]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[19]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[20]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, 2021, 20 (2) : 559-582. doi: 10.3934/cpaa.2020281

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (172)
  • HTML views (549)
  • Cited by (0)

Other articles
by authors

[Back to Top]