-
Previous Article
Global symmetry-breaking bifurcations of critical orbits of invariant functionals
- DCDS-S Home
- This Issue
-
Next Article
Branching and bifurcation
Multiple solutions for a critical quasilinear equation with Hardy potential
Department of Mathematical Science, Tsinghua University, Beijing, China |
$\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{ - \sum\limits_{i,j = 1}^N {{D_j}} ({a_{ij}}(u){D_i}u) + \frac{1}{2}\sum\limits_{i,j = 1}^N {{{a'}_{ij}}} (u){D_i}u{D_j}u - \frac{\mu }{{|x{|^2}}}u = au + |u{|^{{2^ * } - 2}}u}&{{\rm{in}}\;\Omega ,}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{u = 0}&{{\rm{on}}\;\partial \Omega ,}\end{array}} \right.\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {\rm{P}} \right)\end{array}$ |
$ 2^ * = \frac{2N}{N-2} $ |
$ H_0^1(\Omega) $ |
$ L^p(\Omega) $ |
$ a>0 $ |
$ \Omega\subset \mathbb{R}^N $ |
$ a_{ij} $ |
$ N\geq 7 $ |
$ \mu\in[0,\mu^*) $ |
$ \mu^* $ |
References:
[1] |
A. Ambrosetti and P. Rabinowitz,
Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.
doi: 10.1016/0022-1236(73)90051-7. |
[2] |
A. Ambrosetti and Z. Q. Wang,
Positive solutions to a class of quasilinear elliptic equations on $\mathbb R$, Discrete Contin. Dyn. Syst., 9 (2003), 55-68.
doi: 10.3934/dcds.2003.9.55. |
[3] |
H. Berestycki and M. Esteban,
Existence and bifurcation of solutions for an elliptic degenerate problem, J. Differential Equations, 134 (1997), 1-25.
doi: 10.1006/jdeq.1996.3165. |
[4] |
H. Brezis and L. Nirenberg,
Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437-477.
doi: 10.1002/cpa.3160360405. |
[5] |
D. Cao and P. Han,
Solutions to critical elliptic equations with multi-singular inverse sequare potentials, J. Differential Equations, 224 (2006), 332-372.
doi: 10.1016/j.jde.2005.07.010. |
[6] |
D. Cao, S. Peng and S. Yan,
Multiplicity of solutions for the plasma problem in two dimensions, Adv. Math., 225 (2010), 2741-2785.
doi: 10.1016/j.aim.2010.05.012. |
[7] |
D. Cao, S. Peng and S. Yan,
Infinitely many solutions for $p-$Laplacian equation involving critical Sobolev growth, J. Funct. Anal., 262 (2012), 2861-2902.
doi: 10.1016/j.jfa.2012.01.006. |
[8] |
D. Cao and S. Yan,
Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential, Calc. Var. Part. Diff. Equ., 38 (2010), 471-501.
doi: 10.1007/s00526-009-0295-5. |
[9] |
A. Capozzi, D. Fortunato and G. Palmieri,
An existence result for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincare and Non Lineaire, 2 (1985), 463-470.
doi: 10.1016/S0294-1449(16)30395-X. |
[10] |
G. Cerami, S. Solimini and M. Struwe,
Some existence results for superlinear elliptic problem involving critical exponents, J. Funct. Anal., 69 (1986), 289-306.
doi: 10.1016/0022-1236(86)90094-7. |
[11] |
M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear. Anal. Theor. Meth. App., 56 (2004), 213-226.
doi: 10.1016/j.na.2003.09.008. |
[12] |
J. M. Coron,
Topologie et cas limite des injections de Sobolev (Topology and limit case of Sobolev embeddings), C. R. Acad. Sci. Paris Ser. I Math., 199 (1984), 209-212.
|
[13] |
A. de Bouard, N. Hayashi and J. C. Saut,
Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Comm. Math. Phys., 189 (1997), 73-105.
doi: 10.1007/s002200050191. |
[14] |
Y. Deng, Y. Guo and J. Liu, Existence of solutions for quasilinear elliptic equations with Hardy potential, J. Math. Phys., 57 (2016), 031503, 15 pp.
doi: 10.1063/1.4944455. |
[15] |
G. Divillanova and S. Solimini,
Concentration estimates and multiple solutions to elliptic problems at critical growth, Adv. Differential Equations, 7 (2002), 1257-1280.
|
[16] |
J. P. García Azorero and I. Peral Alonso,
Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations, 144 (1998), 441-476.
doi: 10.1006/jdeq.1997.3375. |
[17] |
Y. Guo, J. Liu and Z. Wang,
On a Brezis- Nirenburg type quasilinear problem, J. Fixed Point Theory Appl., 19 (2017), 719-753.
doi: 10.1007/s11784-016-0371-3. |
[18] |
T. Kilpeläinen and J. Malý,
The Winer test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137-161.
doi: 10.1007/BF02392793. |
[19] |
A. M. Kosevich, B. A. Ivanov and A. S. Kovalev, Magnetic solitons in superfluid films, J. Phys. Soc. Japan., 50 (1981), 3262-3267. Google Scholar |
[20] |
L. Leblond and J. Marc, Electron capture by polar molecules, Phys. Rev., 153 (1967), 1-4. Google Scholar |
[21] |
J. Liu, X. Liu and Z.-Q. Wang,
Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method, Comm. PDE, 39 (2014), 2216-2239.
doi: 10.1080/03605302.2014.942738. |
[22] |
J. Liu and Z.-Q. Wang,
Soliton solutions for quasilinear Schr$\ddot{o}$dinger equation Ⅰ, Proc. Amer. Math. Soc., 131 (2003), 441-448.
doi: 10.1090/S0002-9939-02-06783-7. |
[23] |
J. Liu, Y. Wang and Z.-Q. Wang,
Soliton solutions for quasilinear Schr$\ddot{o}$dinger equation Ⅱ, J. Differential Equations, 187 (2003), 473-493.
doi: 10.1016/S0022-0396(02)00064-5. |
[24] |
J. Liu, Y. Wang and Z.-Q. Wang,
Solutions for quasilinear Schr$\ddot{o}$dinger equation via the Nehari method, Comm. PDE, 29 (2004), 879-901.
doi: 10.1081/PDE-120037335. |
[25] |
X. Liu, J. Liu and Z.-Q. Wang,
Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013), 253-263.
doi: 10.1090/S0002-9939-2012-11293-6. |
[26] |
X. Liu, J. Liu and Z.-Q. Wang,
Quasilinear elliptic equations with critical growth via perturbation method, J. Differential Equations., 254 (2013), 102-124.
doi: 10.1016/j.jde.2012.09.006. |
[27] |
X. Liu, J. Liu and Z. Wang,
Quasilinear equations via elliptic regularization method, Adv. Non. Stu., 13 (2013), 517-531.
doi: 10.1515/ans-2013-0215. |
[28] |
M. Maris, Profile decomposition for sequences of Borel measures, https://arXiv.org/abs/1410.6125. Google Scholar |
[29] |
M. Poppenberg, K. Schmitt and Z.-Q. Wang,
On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Part. Diff. Equ., 14 (2002), 329-344.
doi: 10.1007/s005260100105. |
[30] |
M. Struwe,
A global compactness result for elliptic boundary value problems involving limiting nonlinearities, M. Math Z., 187 (1984), 511-517.
doi: 10.1007/BF01174186. |
[31] |
C. Tintarev, Concentration analysis and cocompactness, Concentration Analysis and Applications to PDE, 117-141, Trends Math., Birkh$\ddot{a}$user/Springer, Basel, 2013.
doi: 10.1007/978-3-0348-0373-1_7. |
[32] |
C. Tintarev and K. H. Fineseler, Concentration Compactness, Functional Analytic Grounds and Applications, Imperial College Press, London, 2007.
doi: 10.1142/p456.![]() ![]() |
show all references
References:
[1] |
A. Ambrosetti and P. Rabinowitz,
Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.
doi: 10.1016/0022-1236(73)90051-7. |
[2] |
A. Ambrosetti and Z. Q. Wang,
Positive solutions to a class of quasilinear elliptic equations on $\mathbb R$, Discrete Contin. Dyn. Syst., 9 (2003), 55-68.
doi: 10.3934/dcds.2003.9.55. |
[3] |
H. Berestycki and M. Esteban,
Existence and bifurcation of solutions for an elliptic degenerate problem, J. Differential Equations, 134 (1997), 1-25.
doi: 10.1006/jdeq.1996.3165. |
[4] |
H. Brezis and L. Nirenberg,
Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437-477.
doi: 10.1002/cpa.3160360405. |
[5] |
D. Cao and P. Han,
Solutions to critical elliptic equations with multi-singular inverse sequare potentials, J. Differential Equations, 224 (2006), 332-372.
doi: 10.1016/j.jde.2005.07.010. |
[6] |
D. Cao, S. Peng and S. Yan,
Multiplicity of solutions for the plasma problem in two dimensions, Adv. Math., 225 (2010), 2741-2785.
doi: 10.1016/j.aim.2010.05.012. |
[7] |
D. Cao, S. Peng and S. Yan,
Infinitely many solutions for $p-$Laplacian equation involving critical Sobolev growth, J. Funct. Anal., 262 (2012), 2861-2902.
doi: 10.1016/j.jfa.2012.01.006. |
[8] |
D. Cao and S. Yan,
Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential, Calc. Var. Part. Diff. Equ., 38 (2010), 471-501.
doi: 10.1007/s00526-009-0295-5. |
[9] |
A. Capozzi, D. Fortunato and G. Palmieri,
An existence result for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincare and Non Lineaire, 2 (1985), 463-470.
doi: 10.1016/S0294-1449(16)30395-X. |
[10] |
G. Cerami, S. Solimini and M. Struwe,
Some existence results for superlinear elliptic problem involving critical exponents, J. Funct. Anal., 69 (1986), 289-306.
doi: 10.1016/0022-1236(86)90094-7. |
[11] |
M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear. Anal. Theor. Meth. App., 56 (2004), 213-226.
doi: 10.1016/j.na.2003.09.008. |
[12] |
J. M. Coron,
Topologie et cas limite des injections de Sobolev (Topology and limit case of Sobolev embeddings), C. R. Acad. Sci. Paris Ser. I Math., 199 (1984), 209-212.
|
[13] |
A. de Bouard, N. Hayashi and J. C. Saut,
Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Comm. Math. Phys., 189 (1997), 73-105.
doi: 10.1007/s002200050191. |
[14] |
Y. Deng, Y. Guo and J. Liu, Existence of solutions for quasilinear elliptic equations with Hardy potential, J. Math. Phys., 57 (2016), 031503, 15 pp.
doi: 10.1063/1.4944455. |
[15] |
G. Divillanova and S. Solimini,
Concentration estimates and multiple solutions to elliptic problems at critical growth, Adv. Differential Equations, 7 (2002), 1257-1280.
|
[16] |
J. P. García Azorero and I. Peral Alonso,
Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations, 144 (1998), 441-476.
doi: 10.1006/jdeq.1997.3375. |
[17] |
Y. Guo, J. Liu and Z. Wang,
On a Brezis- Nirenburg type quasilinear problem, J. Fixed Point Theory Appl., 19 (2017), 719-753.
doi: 10.1007/s11784-016-0371-3. |
[18] |
T. Kilpeläinen and J. Malý,
The Winer test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137-161.
doi: 10.1007/BF02392793. |
[19] |
A. M. Kosevich, B. A. Ivanov and A. S. Kovalev, Magnetic solitons in superfluid films, J. Phys. Soc. Japan., 50 (1981), 3262-3267. Google Scholar |
[20] |
L. Leblond and J. Marc, Electron capture by polar molecules, Phys. Rev., 153 (1967), 1-4. Google Scholar |
[21] |
J. Liu, X. Liu and Z.-Q. Wang,
Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method, Comm. PDE, 39 (2014), 2216-2239.
doi: 10.1080/03605302.2014.942738. |
[22] |
J. Liu and Z.-Q. Wang,
Soliton solutions for quasilinear Schr$\ddot{o}$dinger equation Ⅰ, Proc. Amer. Math. Soc., 131 (2003), 441-448.
doi: 10.1090/S0002-9939-02-06783-7. |
[23] |
J. Liu, Y. Wang and Z.-Q. Wang,
Soliton solutions for quasilinear Schr$\ddot{o}$dinger equation Ⅱ, J. Differential Equations, 187 (2003), 473-493.
doi: 10.1016/S0022-0396(02)00064-5. |
[24] |
J. Liu, Y. Wang and Z.-Q. Wang,
Solutions for quasilinear Schr$\ddot{o}$dinger equation via the Nehari method, Comm. PDE, 29 (2004), 879-901.
doi: 10.1081/PDE-120037335. |
[25] |
X. Liu, J. Liu and Z.-Q. Wang,
Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013), 253-263.
doi: 10.1090/S0002-9939-2012-11293-6. |
[26] |
X. Liu, J. Liu and Z.-Q. Wang,
Quasilinear elliptic equations with critical growth via perturbation method, J. Differential Equations., 254 (2013), 102-124.
doi: 10.1016/j.jde.2012.09.006. |
[27] |
X. Liu, J. Liu and Z. Wang,
Quasilinear equations via elliptic regularization method, Adv. Non. Stu., 13 (2013), 517-531.
doi: 10.1515/ans-2013-0215. |
[28] |
M. Maris, Profile decomposition for sequences of Borel measures, https://arXiv.org/abs/1410.6125. Google Scholar |
[29] |
M. Poppenberg, K. Schmitt and Z.-Q. Wang,
On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Part. Diff. Equ., 14 (2002), 329-344.
doi: 10.1007/s005260100105. |
[30] |
M. Struwe,
A global compactness result for elliptic boundary value problems involving limiting nonlinearities, M. Math Z., 187 (1984), 511-517.
doi: 10.1007/BF01174186. |
[31] |
C. Tintarev, Concentration analysis and cocompactness, Concentration Analysis and Applications to PDE, 117-141, Trends Math., Birkh$\ddot{a}$user/Springer, Basel, 2013.
doi: 10.1007/978-3-0348-0373-1_7. |
[32] |
C. Tintarev and K. H. Fineseler, Concentration Compactness, Functional Analytic Grounds and Applications, Imperial College Press, London, 2007.
doi: 10.1142/p456.![]() ![]() |
[1] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[2] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292 |
[3] |
Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020469 |
[4] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 867-884. doi: 10.3934/cpaa.2020294 |
[5] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[6] |
Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253 |
[7] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[8] |
Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258 |
[9] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020454 |
[10] |
Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021008 |
[11] |
Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061 |
[12] |
Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 |
[13] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[14] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[15] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[16] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[17] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
[18] |
Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125 |
[19] |
Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020388 |
[20] |
Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]