November  2019, 12(7): 2019-2034. doi: 10.3934/dcdss.2019130

Selective Pyragas control of Hamiltonian systems

1. 

Department of Mathematical Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA

2. 

Department of Mathematics and Computer Science, Alcorn State University, 1000 ASU Drive, Lorman, MS 39096, USA

* Corresponding author

Received  January 2018 Revised  May 2018 Published  December 2018

We consider a Newton system which has a branch (surface) of neutrally stable periodic orbits. We discuss sufficient conditions which allow arbitrarily small delayed Pyragas control to make one selected cycle asymptotically stable. In the case of small amplitude periodic solutions we give conditions in terms of the asymptotic expansion of the right hand side, while in the case of larger cycles we frame the conditions in terms of the Floquet modes of the target orbit as a solution of the uncontrolled system.

Citation: Edward Hooton, Pavel Kravetc, Dmitrii Rachinskii, Qingwen Hu. Selective Pyragas control of Hamiltonian systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2019-2034. doi: 10.3934/dcdss.2019130
References:
[1]

K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Software, 28 (2002), 1-21, URL https://doi.org/10.1145/513001.513002. doi: 10.1145/513001.513002.  Google Scholar

[2]

K. Engelborghs, T. Luzyanina and G. Samaey, Dde-biftool v. 2.00: A matlab package for bifurcation analysis of delay differential equations. Google Scholar

[3]

T. Faria and L. T. Magalhães, Normal forms for retarded functional-differential equations and applications to Bogdanov-Takens singularity, J. Differential Equations, 122 (1995), 201–224, URL https://doi.org/10.1006/jdeq.1995.1145. doi: 10.1006/jdeq.1995.1145.  Google Scholar

[4]

B. FiedlerV. FlunkertP. Hövel and E. Schöll, Delay stabilization of periodic orbits in coupled oscillator systems, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368 (2010), 319-341.  doi: 10.1098/rsta.2009.0232.  Google Scholar

[5]

J. Hale, Theory of Functional Differential Equations, 2nd edition, Springer-Verlag, New York-Heidelberg, 1977, Applied Mathematical Sciences, Vol. 3.  Google Scholar

[6]

E. Hooton, Z. Balanov, W. Krawcewicz and D. Rachinskii, Noninvasive stabilization of periodic orbits in $O_4$-symmetrically coupled systems near a Hopf bifurcation point, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750087, 18pp, URL https://doi.org/10.1142/S0218127417500870. doi: 10.1142/S0218127417500870.  Google Scholar

[7]

E. HootonP. Kravetc and D. Rachinskii, Restrictions to the use of time-delayed feedback control in symmetric settings, Continuous Dynamical Systems-B, 23 (2018), 543-556.  doi: 10.3934/dcdsb.2017207.  Google Scholar

[8]

E. W. Hooton and A. Amann, Analytical limitation for time-delayed feedback control in autonomous systems, Physical Review Letters, 109 (2012), 154101. Google Scholar

[9]

W. Just, B. Fiedler, M. Georgi, V. Flunkert, P. Hövel and E. Schöll, Beyond the odd number limitation: A bifurcation analysis of time-delayed feedback control, Physical Review E, 76 (2007), 026210, 11pp. doi: 10.1103/PhysRevE.76.026210.  Google Scholar

[10]

J. Kevorkian and J. D. Cole, Multiple Scale and Singular Perturbation Methods, vol. 114 of Applied Mathematical Sciences, Springer-Verlag, New York, 1996, URL https://doi.org/10.1007/978-1-4612-3968-0. doi: 10.1007/978-1-4612-3968-0.  Google Scholar

[11]

J. E. Marsden and M. McCracken, The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976, Applied Mathematical Sciences, Vol. 19.  Google Scholar

[12]

A. H. Nayfeh, Perturbation Methods, Wiley Classics Library, Wiley-Interscience [John Wiley & Sons], New York, 2000, URL https://doi.org/10.1002/9783527617609, Reprint of the 1973 original. doi: 10.1002/9783527617609.  Google Scholar

[13]

K. Pyragas, Continuous control of chaos by self-controlling feedback, Physics letters A, 170 (1992), 421-428.   Google Scholar

[14]

K. Pyragas and A. Tamaševičius, Experimental control of chaos by delayed self-controlling feedback, Physics Letters A, 180 (1993), 99-102.   Google Scholar

[15]

I. Schneider, Delayed feedback control of three diffusively coupled Stuart-Landau oscillators: a case study in equivariant Hopf bifurcation, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 371 (2013), 20120472, 10pp. doi: 10.1098/rsta.2012.0472.  Google Scholar

[16]

J. Sieber, A. Gonzalez-Buelga, S. Neild, D. Wagg and B. Krauskopf, Experimental continuation of periodic orbits through a fold, Physical Review Letters, 100 (2008), 244101. Google Scholar

[17]

D. W. SukowM. E. BleichD. J. Gauthier and J. E. Socolar, Controlling chaos in a fast diode resonator using extended time-delay autosynchronization: Experimental observations and theoretical analysis, Chaos: An Interdisciplinary Journal of Nonlinear Science, 7 (1997), 560-576.   Google Scholar

[18]

M. Tlidi, A. Vladimirov, D. Pieroux and D. Turaev, Spontaneous motion of cavity solitons induced by a delayed feedback, Physical Review Letters, 103 (2009), 103904. Google Scholar

show all references

References:
[1]

K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Software, 28 (2002), 1-21, URL https://doi.org/10.1145/513001.513002. doi: 10.1145/513001.513002.  Google Scholar

[2]

K. Engelborghs, T. Luzyanina and G. Samaey, Dde-biftool v. 2.00: A matlab package for bifurcation analysis of delay differential equations. Google Scholar

[3]

T. Faria and L. T. Magalhães, Normal forms for retarded functional-differential equations and applications to Bogdanov-Takens singularity, J. Differential Equations, 122 (1995), 201–224, URL https://doi.org/10.1006/jdeq.1995.1145. doi: 10.1006/jdeq.1995.1145.  Google Scholar

[4]

B. FiedlerV. FlunkertP. Hövel and E. Schöll, Delay stabilization of periodic orbits in coupled oscillator systems, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368 (2010), 319-341.  doi: 10.1098/rsta.2009.0232.  Google Scholar

[5]

J. Hale, Theory of Functional Differential Equations, 2nd edition, Springer-Verlag, New York-Heidelberg, 1977, Applied Mathematical Sciences, Vol. 3.  Google Scholar

[6]

E. Hooton, Z. Balanov, W. Krawcewicz and D. Rachinskii, Noninvasive stabilization of periodic orbits in $O_4$-symmetrically coupled systems near a Hopf bifurcation point, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750087, 18pp, URL https://doi.org/10.1142/S0218127417500870. doi: 10.1142/S0218127417500870.  Google Scholar

[7]

E. HootonP. Kravetc and D. Rachinskii, Restrictions to the use of time-delayed feedback control in symmetric settings, Continuous Dynamical Systems-B, 23 (2018), 543-556.  doi: 10.3934/dcdsb.2017207.  Google Scholar

[8]

E. W. Hooton and A. Amann, Analytical limitation for time-delayed feedback control in autonomous systems, Physical Review Letters, 109 (2012), 154101. Google Scholar

[9]

W. Just, B. Fiedler, M. Georgi, V. Flunkert, P. Hövel and E. Schöll, Beyond the odd number limitation: A bifurcation analysis of time-delayed feedback control, Physical Review E, 76 (2007), 026210, 11pp. doi: 10.1103/PhysRevE.76.026210.  Google Scholar

[10]

J. Kevorkian and J. D. Cole, Multiple Scale and Singular Perturbation Methods, vol. 114 of Applied Mathematical Sciences, Springer-Verlag, New York, 1996, URL https://doi.org/10.1007/978-1-4612-3968-0. doi: 10.1007/978-1-4612-3968-0.  Google Scholar

[11]

J. E. Marsden and M. McCracken, The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976, Applied Mathematical Sciences, Vol. 19.  Google Scholar

[12]

A. H. Nayfeh, Perturbation Methods, Wiley Classics Library, Wiley-Interscience [John Wiley & Sons], New York, 2000, URL https://doi.org/10.1002/9783527617609, Reprint of the 1973 original. doi: 10.1002/9783527617609.  Google Scholar

[13]

K. Pyragas, Continuous control of chaos by self-controlling feedback, Physics letters A, 170 (1992), 421-428.   Google Scholar

[14]

K. Pyragas and A. Tamaševičius, Experimental control of chaos by delayed self-controlling feedback, Physics Letters A, 180 (1993), 99-102.   Google Scholar

[15]

I. Schneider, Delayed feedback control of three diffusively coupled Stuart-Landau oscillators: a case study in equivariant Hopf bifurcation, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 371 (2013), 20120472, 10pp. doi: 10.1098/rsta.2012.0472.  Google Scholar

[16]

J. Sieber, A. Gonzalez-Buelga, S. Neild, D. Wagg and B. Krauskopf, Experimental continuation of periodic orbits through a fold, Physical Review Letters, 100 (2008), 244101. Google Scholar

[17]

D. W. SukowM. E. BleichD. J. Gauthier and J. E. Socolar, Controlling chaos in a fast diode resonator using extended time-delay autosynchronization: Experimental observations and theoretical analysis, Chaos: An Interdisciplinary Journal of Nonlinear Science, 7 (1997), 560-576.   Google Scholar

[18]

M. Tlidi, A. Vladimirov, D. Pieroux and D. Turaev, Spontaneous motion of cavity solitons induced by a delayed feedback, Physical Review Letters, 103 (2009), 103904. Google Scholar

Figure 1.  Panel (A): Bifurcation diagram of the controlled system for $ \tilde \kappa = (-0.02, 0.012) $. Points $ A $, $ B $ and $ C $ on the branch correspond to the delays $ \tau_A = 7.1857 $, $ \tau_B = 5.9655 $ and $ \tau_C = 5.1761 $, respectively. Panel (B): The same branch of periodic solutions has different stability properties for $ \hat\kappa = (-0.02, 0.02) $. Stable and unstable solutions are shown by solid and dashed lines, respectively.
Figure 2.  Control parameters plane. Conditions (18) of Theorem 2.1 are satisfied within the sector $ O_1OO_2 $. Sectors $ A_1 O A_2 $, $ B_1 O B_2 $, $ C_1 O C_2 $ are defined by conditions (23) and (24) for the periodic solutions indicated by points $ A $, $ B $ and $ C $, respectively, on Figure 1. Point $ \tilde{\kappa} = \left(-0.02, 0.012\right) $ corresponds to control parameters used in Figure Figure 1(A); parameters $ \hat{\kappa} = \left(-0.02, 0.02\right) $ are used in Figure 1(B)
[1]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[2]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[3]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[4]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[5]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[6]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[7]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[8]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[9]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[10]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[11]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[12]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[13]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[14]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[15]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[16]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[17]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[18]

Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021006

[19]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[20]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (86)
  • HTML views (585)
  • Cited by (0)

[Back to Top]