November  2019, 12(7): 2019-2034. doi: 10.3934/dcdss.2019130

Selective Pyragas control of Hamiltonian systems

1. 

Department of Mathematical Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA

2. 

Department of Mathematics and Computer Science, Alcorn State University, 1000 ASU Drive, Lorman, MS 39096, USA

* Corresponding author

Received  January 2018 Revised  May 2018 Published  December 2018

We consider a Newton system which has a branch (surface) of neutrally stable periodic orbits. We discuss sufficient conditions which allow arbitrarily small delayed Pyragas control to make one selected cycle asymptotically stable. In the case of small amplitude periodic solutions we give conditions in terms of the asymptotic expansion of the right hand side, while in the case of larger cycles we frame the conditions in terms of the Floquet modes of the target orbit as a solution of the uncontrolled system.

Citation: Edward Hooton, Pavel Kravetc, Dmitrii Rachinskii, Qingwen Hu. Selective Pyragas control of Hamiltonian systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2019-2034. doi: 10.3934/dcdss.2019130
References:
[1]

K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Software, 28 (2002), 1-21, URL https://doi.org/10.1145/513001.513002. doi: 10.1145/513001.513002. Google Scholar

[2]

K. Engelborghs, T. Luzyanina and G. Samaey, Dde-biftool v. 2.00: A matlab package for bifurcation analysis of delay differential equations.Google Scholar

[3]

T. Faria and L. T. Magalhães, Normal forms for retarded functional-differential equations and applications to Bogdanov-Takens singularity, J. Differential Equations, 122 (1995), 201–224, URL https://doi.org/10.1006/jdeq.1995.1145. doi: 10.1006/jdeq.1995.1145. Google Scholar

[4]

B. FiedlerV. FlunkertP. Hövel and E. Schöll, Delay stabilization of periodic orbits in coupled oscillator systems, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368 (2010), 319-341. doi: 10.1098/rsta.2009.0232. Google Scholar

[5]

J. Hale, Theory of Functional Differential Equations, 2nd edition, Springer-Verlag, New York-Heidelberg, 1977, Applied Mathematical Sciences, Vol. 3. Google Scholar

[6]

E. Hooton, Z. Balanov, W. Krawcewicz and D. Rachinskii, Noninvasive stabilization of periodic orbits in $O_4$-symmetrically coupled systems near a Hopf bifurcation point, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750087, 18pp, URL https://doi.org/10.1142/S0218127417500870. doi: 10.1142/S0218127417500870. Google Scholar

[7]

E. HootonP. Kravetc and D. Rachinskii, Restrictions to the use of time-delayed feedback control in symmetric settings, Continuous Dynamical Systems-B, 23 (2018), 543-556. doi: 10.3934/dcdsb.2017207. Google Scholar

[8]

E. W. Hooton and A. Amann, Analytical limitation for time-delayed feedback control in autonomous systems, Physical Review Letters, 109 (2012), 154101.Google Scholar

[9]

W. Just, B. Fiedler, M. Georgi, V. Flunkert, P. Hövel and E. Schöll, Beyond the odd number limitation: A bifurcation analysis of time-delayed feedback control, Physical Review E, 76 (2007), 026210, 11pp. doi: 10.1103/PhysRevE.76.026210. Google Scholar

[10]

J. Kevorkian and J. D. Cole, Multiple Scale and Singular Perturbation Methods, vol. 114 of Applied Mathematical Sciences, Springer-Verlag, New York, 1996, URL https://doi.org/10.1007/978-1-4612-3968-0. doi: 10.1007/978-1-4612-3968-0. Google Scholar

[11]

J. E. Marsden and M. McCracken, The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976, Applied Mathematical Sciences, Vol. 19. Google Scholar

[12]

A. H. Nayfeh, Perturbation Methods, Wiley Classics Library, Wiley-Interscience [John Wiley & Sons], New York, 2000, URL https://doi.org/10.1002/9783527617609, Reprint of the 1973 original. doi: 10.1002/9783527617609. Google Scholar

[13]

K. Pyragas, Continuous control of chaos by self-controlling feedback, Physics letters A, 170 (1992), 421-428. Google Scholar

[14]

K. Pyragas and A. Tamaševičius, Experimental control of chaos by delayed self-controlling feedback, Physics Letters A, 180 (1993), 99-102. Google Scholar

[15]

I. Schneider, Delayed feedback control of three diffusively coupled Stuart-Landau oscillators: a case study in equivariant Hopf bifurcation, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 371 (2013), 20120472, 10pp. doi: 10.1098/rsta.2012.0472. Google Scholar

[16]

J. Sieber, A. Gonzalez-Buelga, S. Neild, D. Wagg and B. Krauskopf, Experimental continuation of periodic orbits through a fold, Physical Review Letters, 100 (2008), 244101.Google Scholar

[17]

D. W. SukowM. E. BleichD. J. Gauthier and J. E. Socolar, Controlling chaos in a fast diode resonator using extended time-delay autosynchronization: Experimental observations and theoretical analysis, Chaos: An Interdisciplinary Journal of Nonlinear Science, 7 (1997), 560-576. Google Scholar

[18]

M. Tlidi, A. Vladimirov, D. Pieroux and D. Turaev, Spontaneous motion of cavity solitons induced by a delayed feedback, Physical Review Letters, 103 (2009), 103904.Google Scholar

show all references

References:
[1]

K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Software, 28 (2002), 1-21, URL https://doi.org/10.1145/513001.513002. doi: 10.1145/513001.513002. Google Scholar

[2]

K. Engelborghs, T. Luzyanina and G. Samaey, Dde-biftool v. 2.00: A matlab package for bifurcation analysis of delay differential equations.Google Scholar

[3]

T. Faria and L. T. Magalhães, Normal forms for retarded functional-differential equations and applications to Bogdanov-Takens singularity, J. Differential Equations, 122 (1995), 201–224, URL https://doi.org/10.1006/jdeq.1995.1145. doi: 10.1006/jdeq.1995.1145. Google Scholar

[4]

B. FiedlerV. FlunkertP. Hövel and E. Schöll, Delay stabilization of periodic orbits in coupled oscillator systems, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368 (2010), 319-341. doi: 10.1098/rsta.2009.0232. Google Scholar

[5]

J. Hale, Theory of Functional Differential Equations, 2nd edition, Springer-Verlag, New York-Heidelberg, 1977, Applied Mathematical Sciences, Vol. 3. Google Scholar

[6]

E. Hooton, Z. Balanov, W. Krawcewicz and D. Rachinskii, Noninvasive stabilization of periodic orbits in $O_4$-symmetrically coupled systems near a Hopf bifurcation point, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750087, 18pp, URL https://doi.org/10.1142/S0218127417500870. doi: 10.1142/S0218127417500870. Google Scholar

[7]

E. HootonP. Kravetc and D. Rachinskii, Restrictions to the use of time-delayed feedback control in symmetric settings, Continuous Dynamical Systems-B, 23 (2018), 543-556. doi: 10.3934/dcdsb.2017207. Google Scholar

[8]

E. W. Hooton and A. Amann, Analytical limitation for time-delayed feedback control in autonomous systems, Physical Review Letters, 109 (2012), 154101.Google Scholar

[9]

W. Just, B. Fiedler, M. Georgi, V. Flunkert, P. Hövel and E. Schöll, Beyond the odd number limitation: A bifurcation analysis of time-delayed feedback control, Physical Review E, 76 (2007), 026210, 11pp. doi: 10.1103/PhysRevE.76.026210. Google Scholar

[10]

J. Kevorkian and J. D. Cole, Multiple Scale and Singular Perturbation Methods, vol. 114 of Applied Mathematical Sciences, Springer-Verlag, New York, 1996, URL https://doi.org/10.1007/978-1-4612-3968-0. doi: 10.1007/978-1-4612-3968-0. Google Scholar

[11]

J. E. Marsden and M. McCracken, The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976, Applied Mathematical Sciences, Vol. 19. Google Scholar

[12]

A. H. Nayfeh, Perturbation Methods, Wiley Classics Library, Wiley-Interscience [John Wiley & Sons], New York, 2000, URL https://doi.org/10.1002/9783527617609, Reprint of the 1973 original. doi: 10.1002/9783527617609. Google Scholar

[13]

K. Pyragas, Continuous control of chaos by self-controlling feedback, Physics letters A, 170 (1992), 421-428. Google Scholar

[14]

K. Pyragas and A. Tamaševičius, Experimental control of chaos by delayed self-controlling feedback, Physics Letters A, 180 (1993), 99-102. Google Scholar

[15]

I. Schneider, Delayed feedback control of three diffusively coupled Stuart-Landau oscillators: a case study in equivariant Hopf bifurcation, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 371 (2013), 20120472, 10pp. doi: 10.1098/rsta.2012.0472. Google Scholar

[16]

J. Sieber, A. Gonzalez-Buelga, S. Neild, D. Wagg and B. Krauskopf, Experimental continuation of periodic orbits through a fold, Physical Review Letters, 100 (2008), 244101.Google Scholar

[17]

D. W. SukowM. E. BleichD. J. Gauthier and J. E. Socolar, Controlling chaos in a fast diode resonator using extended time-delay autosynchronization: Experimental observations and theoretical analysis, Chaos: An Interdisciplinary Journal of Nonlinear Science, 7 (1997), 560-576. Google Scholar

[18]

M. Tlidi, A. Vladimirov, D. Pieroux and D. Turaev, Spontaneous motion of cavity solitons induced by a delayed feedback, Physical Review Letters, 103 (2009), 103904.Google Scholar

Figure 1.  Panel (A): Bifurcation diagram of the controlled system for $ \tilde \kappa = (-0.02, 0.012) $. Points $ A $, $ B $ and $ C $ on the branch correspond to the delays $ \tau_A = 7.1857 $, $ \tau_B = 5.9655 $ and $ \tau_C = 5.1761 $, respectively. Panel (B): The same branch of periodic solutions has different stability properties for $ \hat\kappa = (-0.02, 0.02) $. Stable and unstable solutions are shown by solid and dashed lines, respectively.
Figure 2.  Control parameters plane. Conditions (18) of Theorem 2.1 are satisfied within the sector $ O_1OO_2 $. Sectors $ A_1 O A_2 $, $ B_1 O B_2 $, $ C_1 O C_2 $ are defined by conditions (23) and (24) for the periodic solutions indicated by points $ A $, $ B $ and $ C $, respectively, on Figure 1. Point $ \tilde{\kappa} = \left(-0.02, 0.012\right) $ corresponds to control parameters used in Figure Figure 1(A); parameters $ \hat{\kappa} = \left(-0.02, 0.02\right) $ are used in Figure 1(B)
[1]

Martin Gugat, Markus Dick. Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Mathematical Control & Related Fields, 2011, 1 (4) : 469-491. doi: 10.3934/mcrf.2011.1.469

[2]

Edward Hooton, Pavel Kravetc, Dmitrii Rachinskii. Restrictions to the use of time-delayed feedback control in symmetric settings. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 543-556. doi: 10.3934/dcdsb.2017207

[3]

Isabelle Schneider, Matthias Bosewitz. Eliminating restrictions of time-delayed feedback control using equivariance. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 451-467. doi: 10.3934/dcds.2016.36.451

[4]

Lizhong Qiang, Bin-Guo Wang. An almost periodic malaria transmission model with time-delayed input of vector. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1525-1546. doi: 10.3934/dcdsb.2017073

[5]

Yijun Lou, Xiao-Qiang Zhao. Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 169-186. doi: 10.3934/dcdsb.2009.12.169

[6]

Peng Cui, Hongguo Zhao, Jun-e Feng. State estimation for discrete linear systems with observation time-delayed noise. Journal of Industrial & Management Optimization, 2011, 7 (1) : 79-85. doi: 10.3934/jimo.2011.7.79

[7]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[8]

Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback. Journal of Industrial & Management Optimization, 2018, 14 (2) : 583-596. doi: 10.3934/jimo.2017061

[9]

Weijiu Liu. Asymptotic behavior of solutions of time-delayed Burgers' equation. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 47-56. doi: 10.3934/dcdsb.2002.2.47

[10]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[11]

Xianhua Huang. Almost periodic and periodic solutions of certain dissipative delay differential equations. Conference Publications, 1998, 1998 (Special) : 301-313. doi: 10.3934/proc.1998.1998.301

[12]

Gonzalo Robledo. Feedback stabilization for a chemostat with delayed output. Mathematical Biosciences & Engineering, 2009, 6 (3) : 629-647. doi: 10.3934/mbe.2009.6.629

[13]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[14]

Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031

[15]

Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105

[16]

Zhiming Guo, Xiaomin Zhang. Multiplicity results for periodic solutions to a class of second order delay differential equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1529-1542. doi: 10.3934/cpaa.2010.9.1529

[17]

Vera Ignatenko. Homoclinic and stable periodic solutions for differential delay equations from physiology. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3637-3661. doi: 10.3934/dcds.2018157

[18]

A. Aschwanden, A. Schulze-Halberg, D. Stoffer. Stable periodic solutions for delay equations with positive feedback - a computer-assisted proof. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 721-736. doi: 10.3934/dcds.2006.14.721

[19]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[20]

Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (31)
  • HTML views (542)
  • Cited by (0)

[Back to Top]