-
Previous Article
Solutions of nonlinear periodic Dirac equations with periodic potentials
- DCDS-S Home
- This Issue
-
Next Article
Selective Pyragas control of Hamiltonian systems
Existence of positive ground state solutions for Choquard equation with variable exponent growth
School of Mathematics and Statistics, Southwest University, Chongqing 400715, China |
$ \begin{equation*} -\Delta u = (I_\alpha*|u|^{f(x)})|u|^{f(x)-2}u \ \ \ \ {\rm in} \ \mathbb{R}^N, \end{equation*} $ |
$ N\geq 3 $ |
$ \alpha\in (0,N) $ |
$ I_\alpha $ |
$ \begin{equation*} f(x) = \begin{cases} p, &x\in\Omega,\\ ( N+\alpha)/(N-2), &x\in\mathbb{R}^N \backslash\Omega, \end{cases} \end{equation*} $ |
$ 1< p <\frac{N+\alpha}{N-2} $ |
$ \Omega\subset\mathbb{R}^N $ |
References:
[1] |
E. Acerbi and G. Mingione,
Regularity results for stationary electrorheological fuids, Arch. Ration. Mech. Anal., 164 (2002), 213-259.
doi: 10.1007/s00205-002-0208-7. |
[2] |
C. O. Alves,
Existence of solution for a degenerate $p(x)$-Laplacian equation in $\mathbb{R}^N$, J. Math. Anal. Appl., 345 (2008), 731-742.
doi: 10.1016/j.jmaa.2008.04.060. |
[3] |
C. O. Alves, D. Cassani, C. Tarsi and M. Yang,
Existence and concentration of ground state solutions for a critical nonlocal Schrodinger equation in $\mathbb{R}^2$, J. Differential Equations, 261 (2016), 1933-1972.
doi: 10.1016/j.jde.2016.04.021. |
[4] |
C. O. Alves, F. Gao, M. Squassina and M. Yang,
Singularly perturbed critical Choquard equations, J. Differential Equations, 263 (2017), 3943-3988.
doi: 10.1016/j.jde.2017.05.009. |
[5] |
C. O. Alves, A. Nobrega and M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differential Equations, 55 (2016), Art. 48, 28 pp.
doi: 10.1007/s00526-016-0984-9. |
[6] |
C. O. Alves and M. Yang,
Investigating the multiplicity and concentration behaviour of solutions for a quasilinear Choquard equation via the penalization method, Proc. Roy. Soc. Edinb. A Math., 146 (2015), 23-58.
doi: 10.1017/S0308210515000311. |
[7] |
S. Antontsev and S. Shmarev,
Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of solutions, Nonlinear Anal., 65 (2006), 728-761.
doi: 10.1016/j.na.2005.09.035. |
[8] |
S. N. Antontsev and J. F. Rodrigues,
On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006), 19-36.
doi: 10.1007/s11565-006-0002-9. |
[9] |
T. Aubin,
Problémes isopérimétriques et espaces de Sobolev, J. Diferential Geom., 11 (1976), 573-598.
doi: 10.4310/jdg/1214433725. |
[10] |
H. Brézis and L. Nirenberg,
Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.
doi: 10.1002/cpa.3160360405. |
[11] |
L. Calotă,
On some quasilinear elliptic equations with critical Sobolev exponents and non-standard growth conditions, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 249-256.
|
[12] |
A. Chambolle and P. L. Lions,
Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), 167-188.
doi: 10.1007/s002110050258. |
[13] |
F. Gao and M. Yang, A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality, Commun. Contemp. Math., 20 (2018), 1750037, 22 pp.
doi: 10.1142/S0219199717500377. |
[14] |
F. Gao and M. Yang,
On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents, J. Math. Anal. Appl., 448 (2017), 1006-1041.
doi: 10.1016/j.jmaa.2016.11.015. |
[15] |
F. Gao and M. Yang, On the Brézis-Nirenberg type critical problem for nonlinear Choquard equation, Sci China Math., 61 (2018), 1219-1242.
doi: 10.1007/s11425-016-9067-5. |
[16] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. |
[17] |
G.-D. Li and C.-L. Tang, Existence of ground state solutions for Choquard equation involving the general upper critical, Commun. Pure Appl. Anal. 18 (2019) 285-300.
doi: 10.3934/cpaa.2019015. |
[18] |
G.-D. Li and C.-L. Tang, Existence of a ground state solution for Choquard equation with the upper critical exponent, Comput. Math. Appl. 76 (2018), 2635-2647. Google Scholar |
[19] |
E. H. Lieb,
Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1976/77), 93-105.
doi: 10.1002/sapm197757293. |
[20] |
E. H. Lieb and M. Loss, Analysis. Second Edition. Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/014. |
[21] |
P. L. Lions,
The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063-1072.
doi: 10.1016/0362-546X(80)90016-4. |
[22] |
J. Liu, J.-F. Liao and C.-L. Tang,
Ground state solutions for semilinear elliptic equations with zero mass in $\mathbb{R}^N$, Electron. J. Differential Equations, 2015 (2015), 1-11.
|
[23] |
D. Lü,
A note on Kirchhoff-type equations with Hartree-type nonlinearities, Nonlinear Anal., 99 (2014), 35-48.
doi: 10.1016/j.na.2013.12.022. |
[24] |
D. Lü,
Existence and Concentration of Solutions for a Nonlinear Choquard Equation, Mediterr. J. Math., 12 (2015), 839-850.
doi: 10.1007/s00009-014-0428-8. |
[25] |
L. Ma and L. Zhao,
Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.
doi: 10.1007/s00205-008-0208-3. |
[26] |
R. A. Mashiyev, B. Cekic, M. Avci and Z. Yucedag,
Existence and multiplicity of weak solutions for nonuniformly elliptic equations with nonstandard growth condition, Complex Var. Elliptic Equ., 57 (2012), 579-595.
doi: 10.1080/17476933.2011.598928. |
[27] |
G. P. Menzala,
On regular solutions of a nonlinear equation of Choquard's type, Proc. Roy. Soc. Edinburgh Sect. A, 86 (1980), 291-301.
doi: 10.1017/S0308210500012191. |
[28] |
I. M. Moroz, R. Penrose and P. Tod,
Spherically-symmetric solutions of the Schrödinger-Newton equations, Topology of the Universe Conference (Cleveland, OH, 1997). Classical Quantum Gravity, 15 (1998), 2733-2742.
doi: 10.1088/0264-9381/15/9/019. |
[29] |
V. Moroz and J. Van Schaftingen,
A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.
doi: 10.1007/s11784-016-0373-1. |
[30] |
V. Moroz and J. Van Schaftingen,
Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367 (2015), 6557-6579.
doi: 10.1090/S0002-9947-2014-06289-2. |
[31] |
V. Moroz and J. Van Schaftingen,
Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.
doi: 10.1016/j.jfa.2013.04.007. |
[32] |
V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 1550005, 12 pp.
doi: 10.1142/S0219199715500054. |
[33] |
V. Moroz and J. Van Schaftingen,
Semi-classical states for the Choquard equation, Calc. Var. Partial Differential Equations, 52 (2015), 199-235.
doi: 10.1007/s00526-014-0709-x. |
[34] |
S. Pekar, Untersuchungen über die Elektronentheorie der Kristalle, Akademie Verlag. Berlin. 1954. Google Scholar |
[35] |
P. Pucci and Q. Zhang,
Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential Equations, 257 (2014), 1529-1566.
doi: 10.1016/j.jde.2014.05.023. |
[36] |
M. Råužička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics. 1748. Springer-Verlag, Berlin, 2000.
doi: 10.1007/BFb0104029. |
[37] |
M. Riesz,
L'intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math., 81 (1949), 1-223.
doi: 10.1007/BF02395016. |
[38] |
D. Ruiz and J. Van Schaftingen,
Odd symmetry of least energy nodal solutions for the Choquard equation, J. Differential Equations, 264 (2018), 1231-1262.
doi: 10.1016/j.jde.2017.09.034. |
[39] |
G. Talenti,
Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.
doi: 10.1007/BF02418013. |
[40] |
J. Van Schaftingen and J. Xia, Choquard equations under confining external potentials, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 1, 24 pp.
doi: 10.1007/s00030-016-0424-8. |
[41] |
T. Wang and T. S. Yi,
Uniqueness of positive solutions of the Choquard type equations, Appl. Anal., 96 (2017), 409-417.
doi: 10.1080/00036811.2016.1138473. |
[42] |
M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[43] |
H. Zhang, J. Xu and F. Zhang, Bound and ground states for a concave-convex generalized Choquard equation, Acta Appl. Math. 147 (2017), 81-93.
doi: 10.1007/s10440-016-0069-y. |
[44] |
H. Zhang, J. Xu and F. Zhang,
Existence and multiplicity of solutions for a generalized Choquard equation, Comput. Math. Appl., 73 (2017), 1803-1814.
doi: 10.1016/j.camwa.2017.02.026. |
[45] |
V. V. Zhikov,
Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675-710,877.
doi: 10.1070/IM1987v029n01ABEH000958. |
show all references
References:
[1] |
E. Acerbi and G. Mingione,
Regularity results for stationary electrorheological fuids, Arch. Ration. Mech. Anal., 164 (2002), 213-259.
doi: 10.1007/s00205-002-0208-7. |
[2] |
C. O. Alves,
Existence of solution for a degenerate $p(x)$-Laplacian equation in $\mathbb{R}^N$, J. Math. Anal. Appl., 345 (2008), 731-742.
doi: 10.1016/j.jmaa.2008.04.060. |
[3] |
C. O. Alves, D. Cassani, C. Tarsi and M. Yang,
Existence and concentration of ground state solutions for a critical nonlocal Schrodinger equation in $\mathbb{R}^2$, J. Differential Equations, 261 (2016), 1933-1972.
doi: 10.1016/j.jde.2016.04.021. |
[4] |
C. O. Alves, F. Gao, M. Squassina and M. Yang,
Singularly perturbed critical Choquard equations, J. Differential Equations, 263 (2017), 3943-3988.
doi: 10.1016/j.jde.2017.05.009. |
[5] |
C. O. Alves, A. Nobrega and M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differential Equations, 55 (2016), Art. 48, 28 pp.
doi: 10.1007/s00526-016-0984-9. |
[6] |
C. O. Alves and M. Yang,
Investigating the multiplicity and concentration behaviour of solutions for a quasilinear Choquard equation via the penalization method, Proc. Roy. Soc. Edinb. A Math., 146 (2015), 23-58.
doi: 10.1017/S0308210515000311. |
[7] |
S. Antontsev and S. Shmarev,
Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of solutions, Nonlinear Anal., 65 (2006), 728-761.
doi: 10.1016/j.na.2005.09.035. |
[8] |
S. N. Antontsev and J. F. Rodrigues,
On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006), 19-36.
doi: 10.1007/s11565-006-0002-9. |
[9] |
T. Aubin,
Problémes isopérimétriques et espaces de Sobolev, J. Diferential Geom., 11 (1976), 573-598.
doi: 10.4310/jdg/1214433725. |
[10] |
H. Brézis and L. Nirenberg,
Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.
doi: 10.1002/cpa.3160360405. |
[11] |
L. Calotă,
On some quasilinear elliptic equations with critical Sobolev exponents and non-standard growth conditions, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 249-256.
|
[12] |
A. Chambolle and P. L. Lions,
Image recovery via total variation minimization and related problems, Numer. Math., 76 (1997), 167-188.
doi: 10.1007/s002110050258. |
[13] |
F. Gao and M. Yang, A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality, Commun. Contemp. Math., 20 (2018), 1750037, 22 pp.
doi: 10.1142/S0219199717500377. |
[14] |
F. Gao and M. Yang,
On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents, J. Math. Anal. Appl., 448 (2017), 1006-1041.
doi: 10.1016/j.jmaa.2016.11.015. |
[15] |
F. Gao and M. Yang, On the Brézis-Nirenberg type critical problem for nonlinear Choquard equation, Sci China Math., 61 (2018), 1219-1242.
doi: 10.1007/s11425-016-9067-5. |
[16] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. |
[17] |
G.-D. Li and C.-L. Tang, Existence of ground state solutions for Choquard equation involving the general upper critical, Commun. Pure Appl. Anal. 18 (2019) 285-300.
doi: 10.3934/cpaa.2019015. |
[18] |
G.-D. Li and C.-L. Tang, Existence of a ground state solution for Choquard equation with the upper critical exponent, Comput. Math. Appl. 76 (2018), 2635-2647. Google Scholar |
[19] |
E. H. Lieb,
Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1976/77), 93-105.
doi: 10.1002/sapm197757293. |
[20] |
E. H. Lieb and M. Loss, Analysis. Second Edition. Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/014. |
[21] |
P. L. Lions,
The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063-1072.
doi: 10.1016/0362-546X(80)90016-4. |
[22] |
J. Liu, J.-F. Liao and C.-L. Tang,
Ground state solutions for semilinear elliptic equations with zero mass in $\mathbb{R}^N$, Electron. J. Differential Equations, 2015 (2015), 1-11.
|
[23] |
D. Lü,
A note on Kirchhoff-type equations with Hartree-type nonlinearities, Nonlinear Anal., 99 (2014), 35-48.
doi: 10.1016/j.na.2013.12.022. |
[24] |
D. Lü,
Existence and Concentration of Solutions for a Nonlinear Choquard Equation, Mediterr. J. Math., 12 (2015), 839-850.
doi: 10.1007/s00009-014-0428-8. |
[25] |
L. Ma and L. Zhao,
Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.
doi: 10.1007/s00205-008-0208-3. |
[26] |
R. A. Mashiyev, B. Cekic, M. Avci and Z. Yucedag,
Existence and multiplicity of weak solutions for nonuniformly elliptic equations with nonstandard growth condition, Complex Var. Elliptic Equ., 57 (2012), 579-595.
doi: 10.1080/17476933.2011.598928. |
[27] |
G. P. Menzala,
On regular solutions of a nonlinear equation of Choquard's type, Proc. Roy. Soc. Edinburgh Sect. A, 86 (1980), 291-301.
doi: 10.1017/S0308210500012191. |
[28] |
I. M. Moroz, R. Penrose and P. Tod,
Spherically-symmetric solutions of the Schrödinger-Newton equations, Topology of the Universe Conference (Cleveland, OH, 1997). Classical Quantum Gravity, 15 (1998), 2733-2742.
doi: 10.1088/0264-9381/15/9/019. |
[29] |
V. Moroz and J. Van Schaftingen,
A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.
doi: 10.1007/s11784-016-0373-1. |
[30] |
V. Moroz and J. Van Schaftingen,
Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367 (2015), 6557-6579.
doi: 10.1090/S0002-9947-2014-06289-2. |
[31] |
V. Moroz and J. Van Schaftingen,
Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.
doi: 10.1016/j.jfa.2013.04.007. |
[32] |
V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 1550005, 12 pp.
doi: 10.1142/S0219199715500054. |
[33] |
V. Moroz and J. Van Schaftingen,
Semi-classical states for the Choquard equation, Calc. Var. Partial Differential Equations, 52 (2015), 199-235.
doi: 10.1007/s00526-014-0709-x. |
[34] |
S. Pekar, Untersuchungen über die Elektronentheorie der Kristalle, Akademie Verlag. Berlin. 1954. Google Scholar |
[35] |
P. Pucci and Q. Zhang,
Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential Equations, 257 (2014), 1529-1566.
doi: 10.1016/j.jde.2014.05.023. |
[36] |
M. Råužička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics. 1748. Springer-Verlag, Berlin, 2000.
doi: 10.1007/BFb0104029. |
[37] |
M. Riesz,
L'intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math., 81 (1949), 1-223.
doi: 10.1007/BF02395016. |
[38] |
D. Ruiz and J. Van Schaftingen,
Odd symmetry of least energy nodal solutions for the Choquard equation, J. Differential Equations, 264 (2018), 1231-1262.
doi: 10.1016/j.jde.2017.09.034. |
[39] |
G. Talenti,
Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.
doi: 10.1007/BF02418013. |
[40] |
J. Van Schaftingen and J. Xia, Choquard equations under confining external potentials, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 1, 24 pp.
doi: 10.1007/s00030-016-0424-8. |
[41] |
T. Wang and T. S. Yi,
Uniqueness of positive solutions of the Choquard type equations, Appl. Anal., 96 (2017), 409-417.
doi: 10.1080/00036811.2016.1138473. |
[42] |
M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[43] |
H. Zhang, J. Xu and F. Zhang, Bound and ground states for a concave-convex generalized Choquard equation, Acta Appl. Math. 147 (2017), 81-93.
doi: 10.1007/s10440-016-0069-y. |
[44] |
H. Zhang, J. Xu and F. Zhang,
Existence and multiplicity of solutions for a generalized Choquard equation, Comput. Math. Appl., 73 (2017), 1803-1814.
doi: 10.1016/j.camwa.2017.02.026. |
[45] |
V. V. Zhikov,
Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675-710,877.
doi: 10.1070/IM1987v029n01ABEH000958. |
[1] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292 |
[2] |
Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326 |
[3] |
Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253 |
[4] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[5] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[6] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[7] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[8] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[9] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[10] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[11] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294 |
[12] |
Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020277 |
[13] |
Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049 |
[14] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[15] |
Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021007 |
[16] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[17] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
[18] |
Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252 |
[19] |
Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084 |
[20] |
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]