November  2019, 12(7): 2051-2061. doi: 10.3934/dcdss.2019132

Solutions of nonlinear periodic Dirac equations with periodic potentials

1. 

Department of Mathematics, Huaihua College, Huaihua, Hunan 418008, China

2. 

School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, China

* Corresponding author: Xiaoyan Lin

Received  December 2017 Revised  April 2018 Published  December 2018

Fund Project: This work is partially supported by the NNFC (No: 11471137) of China and by Hunan Provincial Natural Science Foundation (No:2017JJ22) of China

This paper is concerned with the nonlinear Dirac equation $ -i\sum_{k = 1}^{3}\alpha_{k}\partial_{k}u + [V(x)+a]\beta u + \omega u = f(x, u) $ in $ \mathbb{R}^3 $, where $ V(x) $ and $ f(x, u) $ are periodic in $ x $, $ f(x, u) $ is asymptotically linear and superlinear as $ |u|\rightarrow \infty $. Under weaker assumptions on $ f $, we obtain the existence of one nontrivial solution for the above equation.

Citation: Xiaoyan Lin, Xianhua Tang. Solutions of nonlinear periodic Dirac equations with periodic potentials. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2051-2061. doi: 10.3934/dcdss.2019132
References:
[1]

M. BalabaneT. CazenaveA. Douady and F. Merle, Existence of excited states for a nonlinear Dirac field, Commun. Math. Phys., 119 (1988), 153-176.  doi: 10.1007/BF01218265.  Google Scholar

[2]

M. BalabaneT. Cazenave and L. Vazquez, Existence of standing waves for Dirac fields with singular nonlinearities, Commun. Math. Phys., 133 (1990), 53-74.  doi: 10.1007/BF02096554.  Google Scholar

[3]

T. Bartsch and Y. H. Ding, Solutions of nonlinear Dirac equations, J. Differ. Equations, 226 (2006), 210-249.  doi: 10.1016/j.jde.2005.08.014.  Google Scholar

[4]

J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields, McGraw-Hill, 1965.  Google Scholar

[5]

B. Booss-Bavnbek, Unique continuation property for Dirac operator, revisited, Contemp. Math., 258 (2000), 21-32.  doi: 10.1090/conm/258/04053.  Google Scholar

[6]

T. Cazenave and L. Vazquez, Existence of local solutions of a classical nonlinear Dirac field, Commun. Math. Phys., 105 (1986), 35-47.  doi: 10.1007/BF01212340.  Google Scholar

[7]

S. T. Chen and X. H. Tang, Improved results for Klein-Gordon-Maxwell systems with general nonlinearity, Discrete Contin Dyn Syst-A, 38 (2018), 2333-2348.  doi: 10.3934/dcds.2018096.  Google Scholar

[8]

Y. H. Ding, Variational Methods for Strongly Indefinite Problems, World Scientific, Singapore, 2007. doi: 10.1142/9789812709639.  Google Scholar

[9]

Y. H. Ding, Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation, J. Differ. Equations, 249 (2010), 1015-1034.  doi: 10.1016/j.jde.2010.03.022.  Google Scholar

[10]

Y. H. Ding and X. Y. Liu, Semi-classical limits of ground states of a nonlinear Dirac equation, J. Differ. Equations, 252 (2012), 4962-4987.  doi: 10.1016/j.jde.2012.01.023.  Google Scholar

[11]

Y. H. Ding and X. Y. Liu, Semi-classical limits of ground states of a nonlinear Dirac equation, Rev. Math. Phys., 24 (2012), 1250029, 25pp. doi: 10.1142/S0129055X12500298.  Google Scholar

[12]

Y. H. Ding and B. Ruf, Solutions of a nonlinear Dirac equation with external fields, Arch. Ration. Mech. Anal., 190 (2008), 57-82.  doi: 10.1007/s00205-008-0163-z.  Google Scholar

[13]

Y. H. Ding and B. Ruf, Existence and concentration of semi-classical solutions for Dirac equations with critical nonlinearities, SIAM J. Math. Anal., 44 (2012), 3755-3785.  doi: 10.1137/110850670.  Google Scholar

[14]

Y. H. Ding and J. C. Wei, Stationary states of nonlinear Dirac equations with general potentials, Rev. Math. Phys., 20 (2008), 1007-1032.  doi: 10.1142/S0129055X0800350X.  Google Scholar

[15] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987.   Google Scholar
[16]

M. J. Esteban and E. Séré, Stationary states of nonlinear Dirac equations: A variational approach, Commun. Math. Phys., 171 (1995), 323-350.  doi: 10.1007/BF02099273.  Google Scholar

[17]

M. J. Esteban and E. Séré, An overview on linear and nonlinear Dirac equations, Discrete Contin. Dyn. Syst., 8 (2002), 381-397.  doi: 10.3934/dcds.2002.8.381.  Google Scholar

[18]

W. Kryszewski, Generalized linking theorem with an application to semilinear Schrödinger equations, Adv. Differential Equations, 3 (1998), 441-472.   Google Scholar

[19]

G. B. Li and A. Szulkin, An asymptotically periodic equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763-776.  doi: 10.1142/S0219199702000853.  Google Scholar

[20]

X. Y. Lin and and X. H. Tang, An asymptotically periodic and asymptotically linear Schrödinger equation with indefinite linear part, Comput. Math. Appl., 70 (2015), 726-736.  doi: 10.1016/j.camwa.2015.06.013.  Google Scholar

[21]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 2, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.  doi: 10.1016/S0294-1449(16)30422-X.  Google Scholar

[22]

F. Merle, Existence of stationary states for nonlinear Dirac equations, J. Differ. Equations, 74 (1988), 50-68.  doi: 10.1016/0022-0396(88)90018-6.  Google Scholar

[23]

B. Thaller, The Dirac Equation, Texts and Monographs in Physics, Springer, Berlin, 1992. doi: 10.1007/978-3-662-02753-0.  Google Scholar

[24]

X. H. Tang, New Super-quadratic Conditions for asymptotically periodic Schrödinger equations, Canad. Math. Bull., 60 (2017), 422-435.  doi: 10.4153/CMB-2016-090-2.  Google Scholar

[25]

X. H. Tang and S. T. Chen, Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potential, Disc. Contin. Dyn. Syst., 37 (2017), 4973-5002.  doi: 10.3934/dcds.2017214.  Google Scholar

[26]

X. H. Tang and S. T. Chen, Ground state solutions of Nehari-Pohožaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differential Equations, 56 (2017), Art. 110, 25 pp. doi: 10.1007/s00526-017-1214-9.  Google Scholar

[27]

X. H. Tang, X. Y. Lin and J. S. Yu, Nontrivial solutions for Schrödinger equation with local super-quadratic conditions, J. Dyn. Differ. Equ, (2018), 1-15. doi: 10.1007/s10884-018-9662-2.  Google Scholar

[28]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[29]

M. B. Yang and Y. H. Ding, Stationary states for nonlinear Dirac equations with superlinear nonlinearities, Topol. Methods Nonlinear Anal., 39 (2012), 175-188.   Google Scholar

[30]

F. K. Zhao and Y. H. Ding, Stationary states for nonlinear Dirac equations with superlinear nonlinearities, Nonlinear Anal.TMA, 70 (2009), 921-935.  doi: 10.1016/j.na.2008.01.022.  Google Scholar

[31]

J. ZhangW. P. Qin and F. K. Zhao, Multiple solutions for a class of nonperiodic Dirac equations with vector potentials, Nonlinear Anal.TMA, 75 (2012), 5589-5600.  doi: 10.1016/j.na.2012.05.006.  Google Scholar

[32]

J. Zhang, X. H. Tang and W. Zhang, Ground state solutions for nonperiodic Dirac equation with superquadratic nonlinearity, J. Math. Phys., 54 (2013), 101502, 10pp. doi: 10.1063/1.4824132.  Google Scholar

[33]

J. ZhangX. H. Tang and W. Zhang, On ground state solutions for superlinear Dirac equation, Acta Math. Scientia, 34 (2014), 840-850.  doi: 10.1016/S0252-9602(14)60054-0.  Google Scholar

[34]

J. ZhangX. H. Tang and W. Zhang, Ground states for nonlinear Maxwell-Dirac system with magnetic field, J. Math. Anal. Appl., 421 (2015), 1573-1586.  doi: 10.1016/j.jmaa.2014.08.009.  Google Scholar

[35]

J. ZhangX. H. Tang and W. Zhang, Existence and multiplicity of stationary solutions for a class of Maxwell-Dirac system, Nonlinear Anal., 127 (2015), 298-311.  doi: 10.1016/j.na.2015.07.010.  Google Scholar

[36]

J. ZhangX. H. Tang and W. Zhang, Ground state solutions for a class of nonlinear Maxwell-Dirac system, Topol. Meth. Nonl. Anal., 46 (2015), 785-798.   Google Scholar

show all references

References:
[1]

M. BalabaneT. CazenaveA. Douady and F. Merle, Existence of excited states for a nonlinear Dirac field, Commun. Math. Phys., 119 (1988), 153-176.  doi: 10.1007/BF01218265.  Google Scholar

[2]

M. BalabaneT. Cazenave and L. Vazquez, Existence of standing waves for Dirac fields with singular nonlinearities, Commun. Math. Phys., 133 (1990), 53-74.  doi: 10.1007/BF02096554.  Google Scholar

[3]

T. Bartsch and Y. H. Ding, Solutions of nonlinear Dirac equations, J. Differ. Equations, 226 (2006), 210-249.  doi: 10.1016/j.jde.2005.08.014.  Google Scholar

[4]

J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields, McGraw-Hill, 1965.  Google Scholar

[5]

B. Booss-Bavnbek, Unique continuation property for Dirac operator, revisited, Contemp. Math., 258 (2000), 21-32.  doi: 10.1090/conm/258/04053.  Google Scholar

[6]

T. Cazenave and L. Vazquez, Existence of local solutions of a classical nonlinear Dirac field, Commun. Math. Phys., 105 (1986), 35-47.  doi: 10.1007/BF01212340.  Google Scholar

[7]

S. T. Chen and X. H. Tang, Improved results for Klein-Gordon-Maxwell systems with general nonlinearity, Discrete Contin Dyn Syst-A, 38 (2018), 2333-2348.  doi: 10.3934/dcds.2018096.  Google Scholar

[8]

Y. H. Ding, Variational Methods for Strongly Indefinite Problems, World Scientific, Singapore, 2007. doi: 10.1142/9789812709639.  Google Scholar

[9]

Y. H. Ding, Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation, J. Differ. Equations, 249 (2010), 1015-1034.  doi: 10.1016/j.jde.2010.03.022.  Google Scholar

[10]

Y. H. Ding and X. Y. Liu, Semi-classical limits of ground states of a nonlinear Dirac equation, J. Differ. Equations, 252 (2012), 4962-4987.  doi: 10.1016/j.jde.2012.01.023.  Google Scholar

[11]

Y. H. Ding and X. Y. Liu, Semi-classical limits of ground states of a nonlinear Dirac equation, Rev. Math. Phys., 24 (2012), 1250029, 25pp. doi: 10.1142/S0129055X12500298.  Google Scholar

[12]

Y. H. Ding and B. Ruf, Solutions of a nonlinear Dirac equation with external fields, Arch. Ration. Mech. Anal., 190 (2008), 57-82.  doi: 10.1007/s00205-008-0163-z.  Google Scholar

[13]

Y. H. Ding and B. Ruf, Existence and concentration of semi-classical solutions for Dirac equations with critical nonlinearities, SIAM J. Math. Anal., 44 (2012), 3755-3785.  doi: 10.1137/110850670.  Google Scholar

[14]

Y. H. Ding and J. C. Wei, Stationary states of nonlinear Dirac equations with general potentials, Rev. Math. Phys., 20 (2008), 1007-1032.  doi: 10.1142/S0129055X0800350X.  Google Scholar

[15] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987.   Google Scholar
[16]

M. J. Esteban and E. Séré, Stationary states of nonlinear Dirac equations: A variational approach, Commun. Math. Phys., 171 (1995), 323-350.  doi: 10.1007/BF02099273.  Google Scholar

[17]

M. J. Esteban and E. Séré, An overview on linear and nonlinear Dirac equations, Discrete Contin. Dyn. Syst., 8 (2002), 381-397.  doi: 10.3934/dcds.2002.8.381.  Google Scholar

[18]

W. Kryszewski, Generalized linking theorem with an application to semilinear Schrödinger equations, Adv. Differential Equations, 3 (1998), 441-472.   Google Scholar

[19]

G. B. Li and A. Szulkin, An asymptotically periodic equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763-776.  doi: 10.1142/S0219199702000853.  Google Scholar

[20]

X. Y. Lin and and X. H. Tang, An asymptotically periodic and asymptotically linear Schrödinger equation with indefinite linear part, Comput. Math. Appl., 70 (2015), 726-736.  doi: 10.1016/j.camwa.2015.06.013.  Google Scholar

[21]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 2, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.  doi: 10.1016/S0294-1449(16)30422-X.  Google Scholar

[22]

F. Merle, Existence of stationary states for nonlinear Dirac equations, J. Differ. Equations, 74 (1988), 50-68.  doi: 10.1016/0022-0396(88)90018-6.  Google Scholar

[23]

B. Thaller, The Dirac Equation, Texts and Monographs in Physics, Springer, Berlin, 1992. doi: 10.1007/978-3-662-02753-0.  Google Scholar

[24]

X. H. Tang, New Super-quadratic Conditions for asymptotically periodic Schrödinger equations, Canad. Math. Bull., 60 (2017), 422-435.  doi: 10.4153/CMB-2016-090-2.  Google Scholar

[25]

X. H. Tang and S. T. Chen, Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potential, Disc. Contin. Dyn. Syst., 37 (2017), 4973-5002.  doi: 10.3934/dcds.2017214.  Google Scholar

[26]

X. H. Tang and S. T. Chen, Ground state solutions of Nehari-Pohožaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differential Equations, 56 (2017), Art. 110, 25 pp. doi: 10.1007/s00526-017-1214-9.  Google Scholar

[27]

X. H. Tang, X. Y. Lin and J. S. Yu, Nontrivial solutions for Schrödinger equation with local super-quadratic conditions, J. Dyn. Differ. Equ, (2018), 1-15. doi: 10.1007/s10884-018-9662-2.  Google Scholar

[28]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[29]

M. B. Yang and Y. H. Ding, Stationary states for nonlinear Dirac equations with superlinear nonlinearities, Topol. Methods Nonlinear Anal., 39 (2012), 175-188.   Google Scholar

[30]

F. K. Zhao and Y. H. Ding, Stationary states for nonlinear Dirac equations with superlinear nonlinearities, Nonlinear Anal.TMA, 70 (2009), 921-935.  doi: 10.1016/j.na.2008.01.022.  Google Scholar

[31]

J. ZhangW. P. Qin and F. K. Zhao, Multiple solutions for a class of nonperiodic Dirac equations with vector potentials, Nonlinear Anal.TMA, 75 (2012), 5589-5600.  doi: 10.1016/j.na.2012.05.006.  Google Scholar

[32]

J. Zhang, X. H. Tang and W. Zhang, Ground state solutions for nonperiodic Dirac equation with superquadratic nonlinearity, J. Math. Phys., 54 (2013), 101502, 10pp. doi: 10.1063/1.4824132.  Google Scholar

[33]

J. ZhangX. H. Tang and W. Zhang, On ground state solutions for superlinear Dirac equation, Acta Math. Scientia, 34 (2014), 840-850.  doi: 10.1016/S0252-9602(14)60054-0.  Google Scholar

[34]

J. ZhangX. H. Tang and W. Zhang, Ground states for nonlinear Maxwell-Dirac system with magnetic field, J. Math. Anal. Appl., 421 (2015), 1573-1586.  doi: 10.1016/j.jmaa.2014.08.009.  Google Scholar

[35]

J. ZhangX. H. Tang and W. Zhang, Existence and multiplicity of stationary solutions for a class of Maxwell-Dirac system, Nonlinear Anal., 127 (2015), 298-311.  doi: 10.1016/j.na.2015.07.010.  Google Scholar

[36]

J. ZhangX. H. Tang and W. Zhang, Ground state solutions for a class of nonlinear Maxwell-Dirac system, Topol. Meth. Nonl. Anal., 46 (2015), 785-798.   Google Scholar

[1]

Noboru Okazawa, Kentarou Yoshii. Linear evolution equations with strongly measurable families and application to the Dirac equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 723-744. doi: 10.3934/dcdss.2011.4.723

[2]

Alireza Khatib, Liliane A. Maia. A positive bound state for an asymptotically linear or superlinear Schrödinger equation in exterior domains. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2789-2812. doi: 10.3934/cpaa.2018132

[3]

Jiaquan Liu, Yuxia Guo, Pingan Zeng. Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 107-119. doi: 10.3934/dcds.2006.16.107

[4]

Federico Cacciafesta, Anne-Sophie De Suzzoni. Weak dispersion for the Dirac equation on asymptotically flat and warped product spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4359-4398. doi: 10.3934/dcds.2019177

[5]

Shiwang Ma. Nontrivial periodic solutions for asymptotically linear hamiltonian systems at resonance. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2361-2380. doi: 10.3934/cpaa.2013.12.2361

[6]

Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024

[7]

D. Motreanu, V. V. Motreanu, Nikolaos S. Papageorgiou. Nonautonomous resonant periodic systems with indefinite linear part and a nonsmooth potential. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1401-1414. doi: 10.3934/cpaa.2011.10.1401

[8]

D. Motreanu, V. V. Motreanu, Nikolaos S. Papageorgiou. Two nontrivial solutions for periodic systems with indefinite linear part. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 197-210. doi: 10.3934/dcds.2007.19.197

[9]

Addolorata Salvatore. Sign--changing solutions for an asymptotically linear Schrödinger equation. Conference Publications, 2009, 2009 (Special) : 669-677. doi: 10.3934/proc.2009.2009.669

[10]

Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143

[11]

Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 257-277. doi: 10.3934/dcdss.2018014

[12]

Julián López-Gómez, Marcela Molina-Meyer, Andrea Tellini. Spiraling bifurcation diagrams in superlinear indefinite problems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1561-1588. doi: 10.3934/dcds.2015.35.1561

[13]

Yemin Chen. Analytic regularity for solutions of the spatially homogeneous Landau-Fermi-Dirac equation for hard potentials. Kinetic & Related Models, 2010, 3 (4) : 645-667. doi: 10.3934/krm.2010.3.645

[14]

M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure & Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411

[15]

Andrea Tellini. Imperfect bifurcations via topological methods in superlinear indefinite problems. Conference Publications, 2015, 2015 (special) : 1050-1059. doi: 10.3934/proc.2015.1050

[16]

Guglielmo Feltrin. Existence of positive solutions of a superlinear boundary value problem with indefinite weight. Conference Publications, 2015, 2015 (special) : 436-445. doi: 10.3934/proc.2015.0436

[17]

Julián López-Gómez, Pavol Quittner. Complete and energy blow-up in indefinite superlinear parabolic problems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 169-186. doi: 10.3934/dcds.2006.14.169

[18]

Maria J. Esteban, Eric Séré. An overview on linear and nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 381-397. doi: 10.3934/dcds.2002.8.381

[19]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[20]

José Godoy, Nolbert Morales, Manuel Zamora. Existence and multiplicity of periodic solutions to an indefinite singular equation with two singularities. The degenerate case. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4137-4156. doi: 10.3934/dcds.2019167

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (81)
  • HTML views (460)
  • Cited by (0)

Other articles
by authors

[Back to Top]