-
Previous Article
Traveling waves in Fermi-Pasta-Ulam chains with nonlocal interaction
- DCDS-S Home
- This Issue
-
Next Article
A Leslie-Gower predator-prey model with a free boundary
Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations
School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China |
We consider a 2$n$th-order nonlinear difference equation containing both many advances and retardations with $\phi_c$-Laplacian. Using the critical point theory, we obtain some new and concrete criteria for the existence and multiplicity of periodic and subharmonic solutions in the more general case of the nonlinearity.
References:
[1] |
Z. AlSharawi, J. M. Cushing and S. Elaydi, Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer Proceedings in Mathematics & Statistics, 102. Springer, Heidelberg, 2014. |
[2] |
Z. Balanov, C. Garcia-Azpeitia and W. Krawcewicz, On variational and topological methods in nonlinear difference equations, Communications on Pure and Applied Analysis, 17 (2018), 2813-2844.
doi: 10.3934/cpaa.2018133. |
[3] |
X. C. Cai and J. S. Yu, Existence of periodic solutions for a 2$n$th-order nonlinear difference equation, Journal of Mathematical Analysis and Applications, 329 (2007), 870-878.
doi: 10.1016/j.jmaa.2006.07.022. |
[4] |
P. Chen and X. H. Tang, Existence of homoclinic orbits for 2$n$th-order nonlinear difference equations containing both many advances and retardations, Journal of Mathematical Analysis and Applications, 381 (2011), 485-505.
doi: 10.1016/j.jmaa.2011.02.016. |
[5] |
L. H. Erbe, H. Xia and J. S. Yu, Global stability of a linear nonautonomous delay difference equations, Journal of Difference Equations and Applications, 1 (1995), 151-161.
doi: 10.1080/10236199508808016. |
[6] |
Z. M. Guo and J. S. Yu, Existence of periodic and subharmonic solutions for second-order superlinear difference equations, Science China Mathematics, 46 (2003), 506-515.
doi: 10.1007/BF02884022. |
[7] |
Z. M. Guo and J. S. Yu, The existence of periodic and subharmonic solutions of subquadratic second order difference equations, Journal of the London Mathematical Society, 68 (2003), 419-430.
doi: 10.1112/S0024610703004563. |
[8] |
Z. M. Guo and J. S. Yu, Applications of critical point theory to difference equations, Differences and Differential Equations, 42 (2004), 187-200. |
[9] |
J. H. Leng, Periodic and subharmonic solutions for 2$n$th-order $\phi_{c}$-Laplacian difference equations containing both advance and retardation, Indagationes Mathematicae, 27 (2016), 902-913.
doi: 10.1016/j.indag.2016.05.002. |
[10] |
G. H. Lin and Z. Zhou, Homoclinic solutions of discrete $\phi$-Laplacian equations with mixed nonlinearities, Communications on Pure and Applied Analysis, 17 (2018), 1723-1747.
doi: 10.3934/cpaa.2018082. |
[11] |
X. Liu, Y. B. Zhang, H. P. Shi and X. Q. Deng, Periodic and subharmonic solutions for fourth-order nonlinear difference equations, Applied Mathematics and Computation, 236 (2014), 613-620.
doi: 10.1016/j.amc.2014.03.086. |
[12] |
X. H. Liu, L. H. Zhang, P. Agarwal and G. T. Wang, On some new integral inequalities of Gronwall-Bellman-Bihari type with delay for discontinuous functions and their applications, Indagationes Mathematicae, 27 (2016), 1-10.
doi: 10.1016/j.indag.2015.07.001. |
[13] |
A. Mai and Z. Zhou, Discrete solitons for periodic discrete nonlinear Schrödinger equations, Applied Mathematics and Computation, 222 (2013), 34-41.
doi: 10.1016/j.amc.2013.07.042. |
[14] |
H. Matsunaga, T. Hara and S. Sakata, Global attractivity for a nonlinear difference equation with variable delay, Computers and Mathematics with Applications, 41 (2001), 543-551.
doi: 10.1016/S0898-1221(00)00297-2. |
[15] |
J. Mawhin, Periodic solutions of second order nonlinear difference systems with $\phi$-Laplacian: a variational approach, Nonlinear Analysis, 75 (2012), 4672-4687.
doi: 10.1016/j.na.2011.11.018. |
[16] |
P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Regional Conference Series in Mathematics, American Mathematical Society, 1986.
doi: 10.1090/cbms/065. |
[17] |
H. P. Shi, Periodic and subharmonic solutions for second-order nonlinear difference equations, Journal of Applied Mathematics and Computing, 48 (2015), 157-171.
doi: 10.1007/s12190-014-0796-z. |
[18] |
H. P. Shi and Y. B. Zhang, Existence of periodic solutions for a 2$n$th-order nonlinear difference equation, Taiwanese Journal of Mathematics, 20 (2016), 143-160.
doi: 10.11650/tjm.20.2016.5844. |
[19] |
J. S. Yu and Z. M. Guo, On boundary value problems for a discrete generalized Emden-Fowler equation, Journal of Differential Equations, 231 (2006), 18-31.
doi: 10.1016/j.jde.2006.08.011. |
[20] |
Q. Q. Zhang, Boundary value problems for forth order nonlinear $p$-Laplacian difference equations, Journal of Applied Mathematics, 2014 (2014), Article ID 343129, 6 pages.
doi: 10.1155/2014/343129. |
[21] |
Q. Q. Zhang, Homoclinic orbits for a class of discrete periodic Hamiltonian systems, Proceedings of the American Mathematical Society, 143 (2015), 3155-3163.
doi: 10.1090/S0002-9939-2015-12107-7. |
[22] |
Q. Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part, Communications on Pure and Applied Analysis, 14 (2015), 1929-1940.
doi: 10.3934/cpaa.2015.14.1929. |
[23] |
Q. Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions, Communications on Pure and Applied Analysis, 18 (2019), 425-434.
doi: 10.3934/cpaa.2019021. |
[24] |
Z. Zhou and D. F. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Science China Mathematics, 58 (2015), 781-790.
doi: 10.1007/s11425-014-4883-2. |
[25] |
Z. Zhou and M. T. Su, Boundary value problems for 2$n$th-order $\phi_{c}$-Laplacian difference equations containing both advance and retardation, Applied Mathematics Letters, 41 (2015), 7-11.
doi: 10.1016/j.aml.2014.10.006. |
[26] |
Z. Zhou and J. S. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, Journal of Differential Equations, 249 (2010), 1199-1212.
doi: 10.1016/j.jde.2010.03.010. |
[27] |
Z. Zhou, J. S. Yu and Y. M. Chen, Periodic solutions for a 2$n$th-order nonlinear difference equation, Science China Mathematics, 53 (2010), 41-50.
doi: 10.1007/s11425-009-0167-7. |
[28] |
Z. Zhou, J. S. Yu and Y. M. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity, Science China Mathematics, 54 (2011), 83-93.
doi: 10.1007/s11425-010-4101-9. |
show all references
References:
[1] |
Z. AlSharawi, J. M. Cushing and S. Elaydi, Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer Proceedings in Mathematics & Statistics, 102. Springer, Heidelberg, 2014. |
[2] |
Z. Balanov, C. Garcia-Azpeitia and W. Krawcewicz, On variational and topological methods in nonlinear difference equations, Communications on Pure and Applied Analysis, 17 (2018), 2813-2844.
doi: 10.3934/cpaa.2018133. |
[3] |
X. C. Cai and J. S. Yu, Existence of periodic solutions for a 2$n$th-order nonlinear difference equation, Journal of Mathematical Analysis and Applications, 329 (2007), 870-878.
doi: 10.1016/j.jmaa.2006.07.022. |
[4] |
P. Chen and X. H. Tang, Existence of homoclinic orbits for 2$n$th-order nonlinear difference equations containing both many advances and retardations, Journal of Mathematical Analysis and Applications, 381 (2011), 485-505.
doi: 10.1016/j.jmaa.2011.02.016. |
[5] |
L. H. Erbe, H. Xia and J. S. Yu, Global stability of a linear nonautonomous delay difference equations, Journal of Difference Equations and Applications, 1 (1995), 151-161.
doi: 10.1080/10236199508808016. |
[6] |
Z. M. Guo and J. S. Yu, Existence of periodic and subharmonic solutions for second-order superlinear difference equations, Science China Mathematics, 46 (2003), 506-515.
doi: 10.1007/BF02884022. |
[7] |
Z. M. Guo and J. S. Yu, The existence of periodic and subharmonic solutions of subquadratic second order difference equations, Journal of the London Mathematical Society, 68 (2003), 419-430.
doi: 10.1112/S0024610703004563. |
[8] |
Z. M. Guo and J. S. Yu, Applications of critical point theory to difference equations, Differences and Differential Equations, 42 (2004), 187-200. |
[9] |
J. H. Leng, Periodic and subharmonic solutions for 2$n$th-order $\phi_{c}$-Laplacian difference equations containing both advance and retardation, Indagationes Mathematicae, 27 (2016), 902-913.
doi: 10.1016/j.indag.2016.05.002. |
[10] |
G. H. Lin and Z. Zhou, Homoclinic solutions of discrete $\phi$-Laplacian equations with mixed nonlinearities, Communications on Pure and Applied Analysis, 17 (2018), 1723-1747.
doi: 10.3934/cpaa.2018082. |
[11] |
X. Liu, Y. B. Zhang, H. P. Shi and X. Q. Deng, Periodic and subharmonic solutions for fourth-order nonlinear difference equations, Applied Mathematics and Computation, 236 (2014), 613-620.
doi: 10.1016/j.amc.2014.03.086. |
[12] |
X. H. Liu, L. H. Zhang, P. Agarwal and G. T. Wang, On some new integral inequalities of Gronwall-Bellman-Bihari type with delay for discontinuous functions and their applications, Indagationes Mathematicae, 27 (2016), 1-10.
doi: 10.1016/j.indag.2015.07.001. |
[13] |
A. Mai and Z. Zhou, Discrete solitons for periodic discrete nonlinear Schrödinger equations, Applied Mathematics and Computation, 222 (2013), 34-41.
doi: 10.1016/j.amc.2013.07.042. |
[14] |
H. Matsunaga, T. Hara and S. Sakata, Global attractivity for a nonlinear difference equation with variable delay, Computers and Mathematics with Applications, 41 (2001), 543-551.
doi: 10.1016/S0898-1221(00)00297-2. |
[15] |
J. Mawhin, Periodic solutions of second order nonlinear difference systems with $\phi$-Laplacian: a variational approach, Nonlinear Analysis, 75 (2012), 4672-4687.
doi: 10.1016/j.na.2011.11.018. |
[16] |
P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Regional Conference Series in Mathematics, American Mathematical Society, 1986.
doi: 10.1090/cbms/065. |
[17] |
H. P. Shi, Periodic and subharmonic solutions for second-order nonlinear difference equations, Journal of Applied Mathematics and Computing, 48 (2015), 157-171.
doi: 10.1007/s12190-014-0796-z. |
[18] |
H. P. Shi and Y. B. Zhang, Existence of periodic solutions for a 2$n$th-order nonlinear difference equation, Taiwanese Journal of Mathematics, 20 (2016), 143-160.
doi: 10.11650/tjm.20.2016.5844. |
[19] |
J. S. Yu and Z. M. Guo, On boundary value problems for a discrete generalized Emden-Fowler equation, Journal of Differential Equations, 231 (2006), 18-31.
doi: 10.1016/j.jde.2006.08.011. |
[20] |
Q. Q. Zhang, Boundary value problems for forth order nonlinear $p$-Laplacian difference equations, Journal of Applied Mathematics, 2014 (2014), Article ID 343129, 6 pages.
doi: 10.1155/2014/343129. |
[21] |
Q. Q. Zhang, Homoclinic orbits for a class of discrete periodic Hamiltonian systems, Proceedings of the American Mathematical Society, 143 (2015), 3155-3163.
doi: 10.1090/S0002-9939-2015-12107-7. |
[22] |
Q. Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part, Communications on Pure and Applied Analysis, 14 (2015), 1929-1940.
doi: 10.3934/cpaa.2015.14.1929. |
[23] |
Q. Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions, Communications on Pure and Applied Analysis, 18 (2019), 425-434.
doi: 10.3934/cpaa.2019021. |
[24] |
Z. Zhou and D. F. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Science China Mathematics, 58 (2015), 781-790.
doi: 10.1007/s11425-014-4883-2. |
[25] |
Z. Zhou and M. T. Su, Boundary value problems for 2$n$th-order $\phi_{c}$-Laplacian difference equations containing both advance and retardation, Applied Mathematics Letters, 41 (2015), 7-11.
doi: 10.1016/j.aml.2014.10.006. |
[26] |
Z. Zhou and J. S. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, Journal of Differential Equations, 249 (2010), 1199-1212.
doi: 10.1016/j.jde.2010.03.010. |
[27] |
Z. Zhou, J. S. Yu and Y. M. Chen, Periodic solutions for a 2$n$th-order nonlinear difference equation, Science China Mathematics, 53 (2010), 41-50.
doi: 10.1007/s11425-009-0167-7. |
[28] |
Z. Zhou, J. S. Yu and Y. M. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity, Science China Mathematics, 54 (2011), 83-93.
doi: 10.1007/s11425-010-4101-9. |
[1] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[2] |
Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306 |
[3] |
Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 |
[4] |
Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317 |
[5] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293 |
[6] |
Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 1-60. doi: 10.3934/dcdsb.2020231 |
[7] |
Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041 |
[8] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[9] |
Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020033 |
[10] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[11] |
Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278 |
[12] |
Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228 |
[13] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[14] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[15] |
Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030 |
[16] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021002 |
[17] |
Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052 |
[18] |
Kengo Matsumoto. $ C^* $-algebras associated with asymptotic equivalence relations defined by hyperbolic toral automorphisms. Electronic Research Archive, , () : -. doi: 10.3934/era.2021006 |
[19] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[20] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020403 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]