• Previous Article
    Ground states of nonlinear Schrödinger equations with fractional Laplacians
  • DCDS-S Home
  • This Issue
  • Next Article
    Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations
November  2019, 12(7): 2097-2113. doi: 10.3934/dcdss.2019135

Traveling waves in Fermi-Pasta-Ulam chains with nonlocal interaction

Mathematics Department, Morgan State University, Baltimore, MD 21251, USA

Dedicated to Professor Norman Dancer on the occasion of his 70th birthday

Received  May 2018 Revised  June 2018 Published  December 2018

Fund Project: The author is supported by Simons Foundation, award 410289.

The paper is devoted to traveling waves in FPU type particle chains assuming that each particle interacts with several neighbors on both sides. Making use of variational techniques, we prove that under natural assumptions there exist monotone traveling waves with periodic velocity profile (periodic waves) as well as waves with localized velocity profile (solitary waves). In fact, we obtain periodic waves by means of a suitable version of the Mountain Pass Theorem. Then we get solitary waves in the long wave length limit.

Citation: Alexander Pankov. Traveling waves in Fermi-Pasta-Ulam chains with nonlocal interaction. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2097-2113. doi: 10.3934/dcdss.2019135
References:
[1]

P. W. Bates and C. Zhang, Traveling pulses for the Klein-Gordon equation on a lattice or continuum with long-range interaction, Discrete Contin. Dyn. Syst. A, 16 (2006), 235-252.  doi: 10.3934/dcds.2006.16.235.  Google Scholar

[2]

H. BerestyckiJ. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, Nonlin. Differ. Equat. Appl., 2 (1995), 553-572.  doi: 10.1007/BF01210623.  Google Scholar

[3]

E. Dumas and D. Pelinovsky, Justification of the log-KdV equation in granular chains: The case of precompression, SIAM J. Math. Anal., 46 (2014), 4075-4103.  doi: 10.1137/140969270.  Google Scholar

[4]

T. E. Faver and J. D. Wright, Exact diatomic Fermi-Pasta-Ulam-Tsingou solitary waves with optical band ripples at infinity, SIAM J Math. Anal., 50 (2018), 182-250.  doi: 10.1137/15M1046836.  Google Scholar

[5]

M. Fečkan and V. Rothos, Traveling waves of discrete nonlinear Schrödinger equations with nonlocal interactions, Appl. Anal., 89 (2010), 1387-1411.  doi: 10.1080/00036810903208130.  Google Scholar

[6]

E. Fermi, J. Pasta and S. Ulam, Studies of nonlinear problems, Los Alamos Sci. Lab. Rept., LA-1940 (1955). Google Scholar

[7]

G. Friesecke and J. A. D Wattis, Existence theorem for solitary waves on lattices, Commun. Math. Phys., 161 (1994), 391-418. doi: 10.1007/BF02099784.  Google Scholar

[8]

G. Friesecke and A. Mikikis-Leitner, Cnoidal waves on Fermi-Pasta-Ulam lattices, J. Dyn. Diff. Equat., 27 (2015), 627-652.  doi: 10.1007/s10884-013-9343-0.  Google Scholar

[9]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. Ⅰ. Qualitative properties, renormalization and continuum limit, Nonlinearity, 12 (1999), 1601-1627. doi: 10.1088/0951-7715/12/6/311.  Google Scholar

[10]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. Ⅱ. Linear implies nonlinear stability, Nonlinearity, 15 (2002), 1343-1359. doi: 10.1088/0951-7715/15/4/317.  Google Scholar

[11]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. Ⅲ. Howland type Floquet theory, Nonlinearity, 17 (2004), 207-227. doi: 10.1088/0951-7715/17/1/013.  Google Scholar

[12]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. Ⅳ. Proof of stability at low energy, Nonlinearity, 17 (2004), 229-251. doi: 10.1088/0951-7715/17/1/014.  Google Scholar

[13]

J. GaisonS. MoskowJ. D. Wright and Q. Zhang, Approximation of polyatomic FPU lattices by KdV equations, Multiscale Model. Simul., 12 (2014), 953-995.  doi: 10.1137/130941638.  Google Scholar

[14]

G. Galavotti, The Fermi-Pasta-Ulam Problem, A Status Report, Springer, Berlin, 2008. doi: 10.1007/978-3-540-72995-2.  Google Scholar

[15]

L. Gasinski and N. Papageorgiou, Nonlinear Analysis, Chapman & Hall/CRC, Boca Raton, 2006.  Google Scholar

[16]

M. Herrmann, Unimodal wavetrains and solitons in convex Fermi-Pasta-Ulam chains, Proc. Roy. Soc. Edinburgh A, 140 (2010), 753-785.  doi: 10.1017/S0308210509000146.  Google Scholar

[17]

M. Herrmann and A. Mikikis-Leitner, KdV waves in atomic chains with nonlocal interaction, Discrete Contin. Dyn. Syst. A, 36 (2016), 2047-2067.  doi: 10.3934/dcds.2016.36.2047.  Google Scholar

[18]

G. Iooss, Traveling waves in the Fermi-Pasta-Ulam lattice, Nonlinearity, 13 (2000), 849-866.  doi: 10.1088/0951-7715/13/3/319.  Google Scholar

[19]

L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on $\mathbb{R}^N$, Proc. Roy. Soc. Edinburgh, 129 (1999), 787-809. doi: 10.1017/S0308210500013147.  Google Scholar

[20]

A. Khan and D. Pelinovsky, Long-time stability of small FPU solitary waves, Discrete Contin. Dyn. Syst. A, 37 (2017), 2065-2075.  doi: 10.3934/dcds.2017088.  Google Scholar

[21]

Y. LiZ.-Q. Wang and J. Zheng, Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré, Anal. Non Lin., 23 (2006), 829-837.  doi: 10.1016/j.anihpc.2006.01.003.  Google Scholar

[22]

P. L. Lions, The concentration-compactness method in the calculus of variations. The locally compact case, Ⅱ, Ann. Inst. H. Poincaré, Anal. Non Lin., 1 (1984), 223-283.  doi: 10.1016/S0294-1449(16)30422-X.  Google Scholar

[23]

S. Liu, On superlinear problems without the Ambrosetti-Rabinowitz condition, Nonlin. Anal., 73 (2010), 788-795.  doi: 10.1016/j.na.2010.04.016.  Google Scholar

[24]

D. Motreanu, V. Motreanu and N. Papageorgiou, Topological and Variational Methods with Applications to Boundary Value Problems, Springer, New York, 2014. doi: 10.1007/978-1-4614-9323-5.  Google Scholar

[25]

A. Pankov, Periodic nonlinear Schrödinger equation with applications to photonic crystals, Milan J. Math., 73 (2005), 259-287.  doi: 10.1007/s00032-005-0047-8.  Google Scholar

[26] A. Pankov, Traveling Waves and Periodic Oscillations in Fermi-Pasta-Ulam Lattices, Imperial College Press, London, 2005.  doi: 10.1142/9781860947216.  Google Scholar
[27]

A. Pankov, Nonlinear Schrödinger equations on periodic metric graphs, Discrete Contin. Dyn. Syst. A, 38 (2018), 697-714.  doi: 10.3934/dcds.2018030.  Google Scholar

[28]

A. Pankov and K. Pflüger, Traveling waves in lattice dynamical systems, Math. Meth. Appl. Sci., 23 (2000), 1223-1235.  doi: 10.1002/1099-1476(20000925)23:14<1223::AID-MMA162>3.0.CO;2-Y.  Google Scholar

[29]

A. Pankov and V. Rothos, Traveling waves in Fermi-Pasta-Ulam lattices with saturable nonlinearities, Discrete Contin. Dyn. Syst. A, 30 (2011), 835-849.  doi: 10.3934/dcds.2011.30.835.  Google Scholar

[30]

Z. Rapti, Multibreather stabilityin discrete Klein-Gordon equations: beyond nearest neighbor interaction, Phys. Lett. A, 377 (2013), 1543-1553.  doi: 10.1016/j.physleta.2013.04.035.  Google Scholar

[31]

H. Schwetlick and J. Zimmer, Solitary waves for nonconvex FPU lattices, J. Nonlin. Sci., 17 (2007), 1-12.  doi: 10.1007/s00332-005-0735-0.  Google Scholar

[32]

D. Smets and M. Willem, Solitary waves with prescribed speed on infinite lattices, J. Funct. Anal., 149 (1997), 266-275.  doi: 10.1006/jfan.1996.3121.  Google Scholar

[33] A. Szulkin and T. Weth, The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications, Int. Press, omerville, MA, 2010.   Google Scholar
[34]

J. A. D. Wattis, Approximations to solitary waves on lattices: Ⅲ. The monoatomic lattice with second-neighbour interaction, J. Phys. A: Math. Gen., 29 (1996), 8139-8157.  doi: 10.1088/0305-4470/29/24/035.  Google Scholar

show all references

References:
[1]

P. W. Bates and C. Zhang, Traveling pulses for the Klein-Gordon equation on a lattice or continuum with long-range interaction, Discrete Contin. Dyn. Syst. A, 16 (2006), 235-252.  doi: 10.3934/dcds.2006.16.235.  Google Scholar

[2]

H. BerestyckiJ. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, Nonlin. Differ. Equat. Appl., 2 (1995), 553-572.  doi: 10.1007/BF01210623.  Google Scholar

[3]

E. Dumas and D. Pelinovsky, Justification of the log-KdV equation in granular chains: The case of precompression, SIAM J. Math. Anal., 46 (2014), 4075-4103.  doi: 10.1137/140969270.  Google Scholar

[4]

T. E. Faver and J. D. Wright, Exact diatomic Fermi-Pasta-Ulam-Tsingou solitary waves with optical band ripples at infinity, SIAM J Math. Anal., 50 (2018), 182-250.  doi: 10.1137/15M1046836.  Google Scholar

[5]

M. Fečkan and V. Rothos, Traveling waves of discrete nonlinear Schrödinger equations with nonlocal interactions, Appl. Anal., 89 (2010), 1387-1411.  doi: 10.1080/00036810903208130.  Google Scholar

[6]

E. Fermi, J. Pasta and S. Ulam, Studies of nonlinear problems, Los Alamos Sci. Lab. Rept., LA-1940 (1955). Google Scholar

[7]

G. Friesecke and J. A. D Wattis, Existence theorem for solitary waves on lattices, Commun. Math. Phys., 161 (1994), 391-418. doi: 10.1007/BF02099784.  Google Scholar

[8]

G. Friesecke and A. Mikikis-Leitner, Cnoidal waves on Fermi-Pasta-Ulam lattices, J. Dyn. Diff. Equat., 27 (2015), 627-652.  doi: 10.1007/s10884-013-9343-0.  Google Scholar

[9]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. Ⅰ. Qualitative properties, renormalization and continuum limit, Nonlinearity, 12 (1999), 1601-1627. doi: 10.1088/0951-7715/12/6/311.  Google Scholar

[10]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. Ⅱ. Linear implies nonlinear stability, Nonlinearity, 15 (2002), 1343-1359. doi: 10.1088/0951-7715/15/4/317.  Google Scholar

[11]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. Ⅲ. Howland type Floquet theory, Nonlinearity, 17 (2004), 207-227. doi: 10.1088/0951-7715/17/1/013.  Google Scholar

[12]

G. Friesecke and R. L. Pego, Solitary waves on FPU lattices. Ⅳ. Proof of stability at low energy, Nonlinearity, 17 (2004), 229-251. doi: 10.1088/0951-7715/17/1/014.  Google Scholar

[13]

J. GaisonS. MoskowJ. D. Wright and Q. Zhang, Approximation of polyatomic FPU lattices by KdV equations, Multiscale Model. Simul., 12 (2014), 953-995.  doi: 10.1137/130941638.  Google Scholar

[14]

G. Galavotti, The Fermi-Pasta-Ulam Problem, A Status Report, Springer, Berlin, 2008. doi: 10.1007/978-3-540-72995-2.  Google Scholar

[15]

L. Gasinski and N. Papageorgiou, Nonlinear Analysis, Chapman & Hall/CRC, Boca Raton, 2006.  Google Scholar

[16]

M. Herrmann, Unimodal wavetrains and solitons in convex Fermi-Pasta-Ulam chains, Proc. Roy. Soc. Edinburgh A, 140 (2010), 753-785.  doi: 10.1017/S0308210509000146.  Google Scholar

[17]

M. Herrmann and A. Mikikis-Leitner, KdV waves in atomic chains with nonlocal interaction, Discrete Contin. Dyn. Syst. A, 36 (2016), 2047-2067.  doi: 10.3934/dcds.2016.36.2047.  Google Scholar

[18]

G. Iooss, Traveling waves in the Fermi-Pasta-Ulam lattice, Nonlinearity, 13 (2000), 849-866.  doi: 10.1088/0951-7715/13/3/319.  Google Scholar

[19]

L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on $\mathbb{R}^N$, Proc. Roy. Soc. Edinburgh, 129 (1999), 787-809. doi: 10.1017/S0308210500013147.  Google Scholar

[20]

A. Khan and D. Pelinovsky, Long-time stability of small FPU solitary waves, Discrete Contin. Dyn. Syst. A, 37 (2017), 2065-2075.  doi: 10.3934/dcds.2017088.  Google Scholar

[21]

Y. LiZ.-Q. Wang and J. Zheng, Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré, Anal. Non Lin., 23 (2006), 829-837.  doi: 10.1016/j.anihpc.2006.01.003.  Google Scholar

[22]

P. L. Lions, The concentration-compactness method in the calculus of variations. The locally compact case, Ⅱ, Ann. Inst. H. Poincaré, Anal. Non Lin., 1 (1984), 223-283.  doi: 10.1016/S0294-1449(16)30422-X.  Google Scholar

[23]

S. Liu, On superlinear problems without the Ambrosetti-Rabinowitz condition, Nonlin. Anal., 73 (2010), 788-795.  doi: 10.1016/j.na.2010.04.016.  Google Scholar

[24]

D. Motreanu, V. Motreanu and N. Papageorgiou, Topological and Variational Methods with Applications to Boundary Value Problems, Springer, New York, 2014. doi: 10.1007/978-1-4614-9323-5.  Google Scholar

[25]

A. Pankov, Periodic nonlinear Schrödinger equation with applications to photonic crystals, Milan J. Math., 73 (2005), 259-287.  doi: 10.1007/s00032-005-0047-8.  Google Scholar

[26] A. Pankov, Traveling Waves and Periodic Oscillations in Fermi-Pasta-Ulam Lattices, Imperial College Press, London, 2005.  doi: 10.1142/9781860947216.  Google Scholar
[27]

A. Pankov, Nonlinear Schrödinger equations on periodic metric graphs, Discrete Contin. Dyn. Syst. A, 38 (2018), 697-714.  doi: 10.3934/dcds.2018030.  Google Scholar

[28]

A. Pankov and K. Pflüger, Traveling waves in lattice dynamical systems, Math. Meth. Appl. Sci., 23 (2000), 1223-1235.  doi: 10.1002/1099-1476(20000925)23:14<1223::AID-MMA162>3.0.CO;2-Y.  Google Scholar

[29]

A. Pankov and V. Rothos, Traveling waves in Fermi-Pasta-Ulam lattices with saturable nonlinearities, Discrete Contin. Dyn. Syst. A, 30 (2011), 835-849.  doi: 10.3934/dcds.2011.30.835.  Google Scholar

[30]

Z. Rapti, Multibreather stabilityin discrete Klein-Gordon equations: beyond nearest neighbor interaction, Phys. Lett. A, 377 (2013), 1543-1553.  doi: 10.1016/j.physleta.2013.04.035.  Google Scholar

[31]

H. Schwetlick and J. Zimmer, Solitary waves for nonconvex FPU lattices, J. Nonlin. Sci., 17 (2007), 1-12.  doi: 10.1007/s00332-005-0735-0.  Google Scholar

[32]

D. Smets and M. Willem, Solitary waves with prescribed speed on infinite lattices, J. Funct. Anal., 149 (1997), 266-275.  doi: 10.1006/jfan.1996.3121.  Google Scholar

[33] A. Szulkin and T. Weth, The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications, Int. Press, omerville, MA, 2010.   Google Scholar
[34]

J. A. D. Wattis, Approximations to solitary waves on lattices: Ⅲ. The monoatomic lattice with second-neighbour interaction, J. Phys. A: Math. Gen., 29 (1996), 8139-8157.  doi: 10.1088/0305-4470/29/24/035.  Google Scholar

[1]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[2]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[3]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[4]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[5]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[6]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[7]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[8]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[9]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[10]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[11]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[12]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

[13]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[14]

Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315

[15]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[16]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[17]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020389

[18]

Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282

[19]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

[20]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (204)
  • HTML views (579)
  • Cited by (1)

Other articles
by authors

[Back to Top]