November  2019, 12(7): 2115-2125. doi: 10.3934/dcdss.2019136

Ground states of nonlinear Schrödinger equations with fractional Laplacians

1. 

Center for Applied Mathematics, Guangzhou University, Guangzhou 510405, China

2. 

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

* Corresponding author: Qinqin Zhang

Received  December 2017 Revised  April 2018 Published  December 2018

Fund Project: This work was supported by National Natural Science Foundation (11701114, 11471085) and the program for Changjiang scholars and Innovative Recearch Team in univesity (Grant No.IRT1226)

Inspired by Schaftingen [15], we develop a symmetric variational principle for the field equation involving a fractional Laplacians
$ \begin{equation*} \left\{ \begin{aligned} (-\Delta)^\alpha u+u& = f(u), x\in\mathbb{R}^N,\\ u(x)&\geq 0. \end{aligned} \right. \end{equation*} $
As an application, we prove the existence of symmetric ground states in the fractional Sobolev space
$ H^\alpha (\mathbb{R}^N) $
. These results improve some known ones in the literature. An example is also given to illustrate our results.
Citation: Zupei Shen, Zhiqing Han, Qinqin Zhang. Ground states of nonlinear Schrödinger equations with fractional Laplacians. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2115-2125. doi: 10.3934/dcdss.2019136
References:
[1]

S. Abe and S. Thurner, Anomalous diffusion in view of Einsteins 1905 theory of Brownian motion, Physica A, 356 (2005), 403-407. Google Scholar

[2]

F. Almgren and E. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc, 2 (1989), 683-773. doi: 10.1090/S0894-0347-1989-1002633-4. Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. doi: 10.1016/0022-1236(73)90051-7. Google Scholar

[4]

D. Applebaum, Lévy processes-from probability to finance and quantum groups, Not. Am. Math. Soc, 51 (2004), 1336-1347. Google Scholar

[5]

X. Chang and Z.-Q. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, 26 (2013), 479-494. doi: 10.1088/0951-7715/26/2/479. Google Scholar

[6]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional sobolev spaces, Bull. Sci. Math, 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[7]

S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Le Matematiche, LXVIII, 68 (2013), 201-216. Google Scholar

[8]

P. FelmerA. Quaas and J. Tan, Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237-1262. doi: 10.1017/S0308210511000746. Google Scholar

[9]

P. FelmerA. QuaasM. Tang and J. Yu, Monotonicity properties for ground states of the scalar field equation, Ann.I.Poincare-AN, 25 (2008), 105-119. doi: 10.1016/j.anihpc.2006.12.003. Google Scholar

[10]

M. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Comm. Pure Appl. Math., 62 (2009), 198-214. doi: 10.1002/cpa.20253. Google Scholar

[11]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $\mathbb{R}^N$, Proc. Amer. Math. Soc, 131 (2002), 2399-2408. doi: 10.1090/S0002-9939-02-06821-1. Google Scholar

[12]

L. Jeanjean and K. Tanaka, A positive solution for an asymptotically linear elliptic problem on $\mathbb{R}^N$ autonomous at infinity, ESAIM Control Optim. Calc. Var, 7 (2002), 597-614. doi: 10.1051/cocv:2002068. Google Scholar

[13]

E. Lieb and M. Loss, Analysis, Grad. Stud. Math., vol. 14, Amer. Math. Soc, Providence, RI, 2001. doi: 10.1090/gsm/014. Google Scholar

[14]

S. Liu, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012), 1-9. doi: 10.1007/s00526-011-0447-2. Google Scholar

[15]

J. Van Schaftingen, Symmetrization and minimax principles, Commun. Contemp. Math., 7 (2005), 463-481. doi: 10.1142/S0219199705001817. Google Scholar

[16]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822. doi: 10.1016/j.jfa.2009.09.013. Google Scholar

[17]

X. Tang, Non-Nehari manifold method for asymptoticallyperiodic Schrödinger equations,, Sci. China Math., 58 (2015), 715-728. doi: 10.1007/s11425-014-4957-1. Google Scholar

[18]

X. Tang, Non-Nehari-manifold method for asymptoticallylinear Schrödinger equation,, J. Aust. Math. Soc., 98 (2015), 104-116. doi: 10.1017/S144678871400041X. Google Scholar

[19]

X. Tang, X. Lin and J. Yu, Nontrivial solutions for Schrödinger equation with local supper-quadratic conditions, J. Dyn. Diff. Equat., accepted for publication. doi: 10.1007/s10884-018-9662-2. Google Scholar

[20] L. VlahosH. IslikerY. Kominis and K. Hizonidis, Normal and Anomalous Diffusion: A Tutorial, Order and Chaos, Patras University Press, 2008. Google Scholar
[21]

Y. Wei and X. Su, Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian, Calc. Var. Partial Differential Equations, 52 (2015), 95-124. doi: 10.1007/s00526-013-0706-5. Google Scholar

[22]

H. Weitzner and G. M. Zaslavsky, Some applications of fractional equations, Chaotic transport and complexity in classical and quantum dynamics, Commun. Nonlinear Sci. Numer. Simul., 8 (2003), 273-281. doi: 10.1016/S1007-5704(03)00049-2. Google Scholar

[23]

M. Willem, Minimax Theorems, Progr. Nonlinear Differential Equations Appl., vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1. Google Scholar

show all references

References:
[1]

S. Abe and S. Thurner, Anomalous diffusion in view of Einsteins 1905 theory of Brownian motion, Physica A, 356 (2005), 403-407. Google Scholar

[2]

F. Almgren and E. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc, 2 (1989), 683-773. doi: 10.1090/S0894-0347-1989-1002633-4. Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. doi: 10.1016/0022-1236(73)90051-7. Google Scholar

[4]

D. Applebaum, Lévy processes-from probability to finance and quantum groups, Not. Am. Math. Soc, 51 (2004), 1336-1347. Google Scholar

[5]

X. Chang and Z.-Q. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, 26 (2013), 479-494. doi: 10.1088/0951-7715/26/2/479. Google Scholar

[6]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional sobolev spaces, Bull. Sci. Math, 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[7]

S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Le Matematiche, LXVIII, 68 (2013), 201-216. Google Scholar

[8]

P. FelmerA. Quaas and J. Tan, Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237-1262. doi: 10.1017/S0308210511000746. Google Scholar

[9]

P. FelmerA. QuaasM. Tang and J. Yu, Monotonicity properties for ground states of the scalar field equation, Ann.I.Poincare-AN, 25 (2008), 105-119. doi: 10.1016/j.anihpc.2006.12.003. Google Scholar

[10]

M. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Comm. Pure Appl. Math., 62 (2009), 198-214. doi: 10.1002/cpa.20253. Google Scholar

[11]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $\mathbb{R}^N$, Proc. Amer. Math. Soc, 131 (2002), 2399-2408. doi: 10.1090/S0002-9939-02-06821-1. Google Scholar

[12]

L. Jeanjean and K. Tanaka, A positive solution for an asymptotically linear elliptic problem on $\mathbb{R}^N$ autonomous at infinity, ESAIM Control Optim. Calc. Var, 7 (2002), 597-614. doi: 10.1051/cocv:2002068. Google Scholar

[13]

E. Lieb and M. Loss, Analysis, Grad. Stud. Math., vol. 14, Amer. Math. Soc, Providence, RI, 2001. doi: 10.1090/gsm/014. Google Scholar

[14]

S. Liu, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012), 1-9. doi: 10.1007/s00526-011-0447-2. Google Scholar

[15]

J. Van Schaftingen, Symmetrization and minimax principles, Commun. Contemp. Math., 7 (2005), 463-481. doi: 10.1142/S0219199705001817. Google Scholar

[16]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822. doi: 10.1016/j.jfa.2009.09.013. Google Scholar

[17]

X. Tang, Non-Nehari manifold method for asymptoticallyperiodic Schrödinger equations,, Sci. China Math., 58 (2015), 715-728. doi: 10.1007/s11425-014-4957-1. Google Scholar

[18]

X. Tang, Non-Nehari-manifold method for asymptoticallylinear Schrödinger equation,, J. Aust. Math. Soc., 98 (2015), 104-116. doi: 10.1017/S144678871400041X. Google Scholar

[19]

X. Tang, X. Lin and J. Yu, Nontrivial solutions for Schrödinger equation with local supper-quadratic conditions, J. Dyn. Diff. Equat., accepted for publication. doi: 10.1007/s10884-018-9662-2. Google Scholar

[20] L. VlahosH. IslikerY. Kominis and K. Hizonidis, Normal and Anomalous Diffusion: A Tutorial, Order and Chaos, Patras University Press, 2008. Google Scholar
[21]

Y. Wei and X. Su, Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian, Calc. Var. Partial Differential Equations, 52 (2015), 95-124. doi: 10.1007/s00526-013-0706-5. Google Scholar

[22]

H. Weitzner and G. M. Zaslavsky, Some applications of fractional equations, Chaotic transport and complexity in classical and quantum dynamics, Commun. Nonlinear Sci. Numer. Simul., 8 (2003), 273-281. doi: 10.1016/S1007-5704(03)00049-2. Google Scholar

[23]

M. Willem, Minimax Theorems, Progr. Nonlinear Differential Equations Appl., vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1. Google Scholar

[1]

Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091

[2]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[3]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[4]

Chao Ji. Ground state solutions of fractional Schrödinger equations with potentials and weak monotonicity condition on the nonlinear term. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6071-6089. doi: 10.3934/dcdsb.2019131

[5]

Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184

[6]

Kenji Nakanishi, Tristan Roy. Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2023-2058. doi: 10.3934/cpaa.2016026

[7]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[8]

Lun Guo, Wentao Huang, Huifang Jia. Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $ \mathbb{R} ^{3} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1663-1693. doi: 10.3934/cpaa.2019079

[9]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[10]

Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048

[11]

Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120

[12]

C. Cortázar, Marta García-Huidobro. On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian. Communications on Pure & Applied Analysis, 2006, 5 (4) : 813-826. doi: 10.3934/cpaa.2006.5.813

[13]

C. Cortázar, Marta García-Huidobro. On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian. Communications on Pure & Applied Analysis, 2006, 5 (1) : 71-84. doi: 10.3934/cpaa.2006.5.71

[14]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[15]

Maoding Zhen, Jinchun He, Haoyuan Xu, Meihua Yang. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6523-6539. doi: 10.3934/dcds.2019283

[16]

Alex H. Ardila. Stability of ground states for logarithmic Schrödinger equation with a $δ^{\prime}$-interaction. Evolution Equations & Control Theory, 2017, 6 (2) : 155-175. doi: 10.3934/eect.2017009

[17]

Ran Zhuo, Yan Li. Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1595-1611. doi: 10.3934/dcds.2019071

[18]

Jianhua Chen, Xianhua Tang, Bitao Cheng. Existence of ground state solutions for a class of quasilinear Schrödinger equations with general critical nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 493-517. doi: 10.3934/cpaa.2019025

[19]

Zhitao Zhang, Haijun Luo. Symmetry and asymptotic behavior of ground state solutions for schrödinger systems with linear interaction. Communications on Pure & Applied Analysis, 2018, 17 (3) : 787-806. doi: 10.3934/cpaa.2018040

[20]

Xianhua Tang, Sitong Chen. Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4973-5002. doi: 10.3934/dcds.2017214

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (81)
  • HTML views (527)
  • Cited by (0)

Other articles
by authors

[Back to Top]