\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Ground states of nonlinear Schrödinger equations with fractional Laplacians

  • * Corresponding author: Qinqin Zhang

    * Corresponding author: Qinqin Zhang

This work was supported by National Natural Science Foundation (11701114, 11471085) and the program for Changjiang scholars and Innovative Recearch Team in univesity (Grant No.IRT1226).

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • Inspired by Schaftingen [15], we develop a symmetric variational principle for the field equation involving a fractional Laplacians

    $ \begin{equation*} \left\{ \begin{aligned} (-\Delta)^\alpha u+u& = f(u), x\in\mathbb{R}^N,\\ u(x)&\geq 0. \end{aligned} \right. \end{equation*} $

    As an application, we prove the existence of symmetric ground states in the fractional Sobolev space $ H^\alpha (\mathbb{R}^N) $. These results improve some known ones in the literature. An example is also given to illustrate our results.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] S. Abe and S. Thurner, Anomalous diffusion in view of Einsteins 1905 theory of Brownian motion, Physica A, 356 (2005), 403-407. 
    [2] F. Almgren and E. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc, 2 (1989), 683-773.  doi: 10.1090/S0894-0347-1989-1002633-4.
    [3] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.
    [4] D. Applebaum, Lévy processes-from probability to finance and quantum groups, Not. Am. Math. Soc, 51 (2004), 1336-1347.
    [5] X. Chang and Z.-Q. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, 26 (2013), 479-494.  doi: 10.1088/0951-7715/26/2/479.
    [6] E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional sobolev spaces, Bull. Sci. Math, 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.
    [7] S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Le Matematiche, LXVIII, 68 (2013), 201-216.
    [8] P. FelmerA. Quaas and J. Tan, Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.
    [9] P. FelmerA. QuaasM. Tang and J. Yu, Monotonicity properties for ground states of the scalar field equation, Ann.I.Poincare-AN, 25 (2008), 105-119.  doi: 10.1016/j.anihpc.2006.12.003.
    [10] M. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Comm. Pure Appl. Math., 62 (2009), 198-214.  doi: 10.1002/cpa.20253.
    [11] L. Jeanjean and K. Tanaka, A remark on least energy solutions in $\mathbb{R}^N$, Proc. Amer. Math. Soc, 131 (2002), 2399-2408.  doi: 10.1090/S0002-9939-02-06821-1.
    [12] L. Jeanjean and K. Tanaka, A positive solution for an asymptotically linear elliptic problem on $\mathbb{R}^N$ autonomous at infinity, ESAIM Control Optim. Calc. Var, 7 (2002), 597-614.  doi: 10.1051/cocv:2002068.
    [13] E. Lieb and M. Loss, Analysis, Grad. Stud. Math., vol. 14, Amer. Math. Soc, Providence, RI, 2001. doi: 10.1090/gsm/014.
    [14] S. Liu, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012), 1-9.  doi: 10.1007/s00526-011-0447-2.
    [15] J. Van Schaftingen, Symmetrization and minimax principles, Commun. Contemp. Math., 7 (2005), 463-481. doi: 10.1142/S0219199705001817.
    [16] A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.  doi: 10.1016/j.jfa.2009.09.013.
    [17] X. Tang, Non-Nehari manifold method for asymptoticallyperiodic Schrödinger equations,, Sci. China Math., 58 (2015), 715-728.  doi: 10.1007/s11425-014-4957-1.
    [18] X. Tang, Non-Nehari-manifold method for asymptoticallylinear Schrödinger equation,, J. Aust. Math. Soc., 98 (2015), 104-116.  doi: 10.1017/S144678871400041X.
    [19] X. Tang, X. Lin and J. Yu, Nontrivial solutions for Schrödinger equation with local supper-quadratic conditions, J. Dyn. Diff. Equat., accepted for publication. doi: 10.1007/s10884-018-9662-2.
    [20] L. VlahosH. IslikerY. Kominis and  K. HizonidisNormal and Anomalous Diffusion: A Tutorial, Order and Chaos, Patras University Press, 2008. 
    [21] Y. Wei and X. Su, Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian, Calc. Var. Partial Differential Equations, 52 (2015), 95-124.  doi: 10.1007/s00526-013-0706-5.
    [22] H. Weitzner and G. M. Zaslavsky, Some applications of fractional equations, Chaotic transport and complexity in classical and quantum dynamics, Commun. Nonlinear Sci. Numer. Simul., 8 (2003), 273-281. doi: 10.1016/S1007-5704(03)00049-2.
    [23] M. Willem, Minimax Theorems, Progr. Nonlinear Differential Equations Appl., vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.
  • 加载中
SHARE

Article Metrics

HTML views(2721) PDF downloads(332) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return