November  2019, 12(7): 2127-2141. doi: 10.3934/dcdss.2019137

On periodic solutions in the Whitney's inverted pendulum problem

Institute of Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland

Received  November 2017 Revised  April 2018 Published  December 2018

Fund Project: This research is partially supported by the Polish National Science Center under Grant No. 2014/14/A/ST1/00453.

In the book "What is Mathematics?" Richard Courant and Herbert Robbins presented a solution of a Whitney's problem of an inverted pendulum on a railway carriage moving on a straight line. Since the appearance of the book in 1941 the solution was contested by several distinguished mathematicians. The first formal proof based on the idea of Courant and Robbins was published by Ivan Polekhin in 2014. Polekhin also proved a theorem on the existence of a periodic solution of the problem provided the movement of the carriage on the line is periodic. In the present paper we slightly improve the Polekhin's theorem by lowering the regularity class of the motion and we prove a theorem on the existence of a periodic solution if the carriage moves periodically on the plane.

Citation: Roman Srzednicki. On periodic solutions in the Whitney's inverted pendulum problem. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2127-2141. doi: 10.3934/dcdss.2019137
References:
[1]

V. I. Arnol'd, What is Mathematics?, (Russian), MCNMO, Moscow, 2002. Google Scholar

[2]

V. I. Arnol'd, Mathematical Understanding of Nature, (Russian), MCNMO, Moscow, 2009. English translation: V. I. Arnold, Mathematical Understanding of Nature, Amer. Math. Soc., Providence, R. I., 2014. doi: 10.1090/mbk/085.  Google Scholar

[3]

B. E. Blank, Book review "What is Mathematics? An Elementary Approach to Ideas and Methods", Notices Amer. Math. Soc., 48 (2001), 1325-1329.   Google Scholar

[4]

S. V. Bolotin and V. V. Kozlov, Calculus of variations in the large, existence of trajectories in a domain with boundary, and Whitney's inverted pendulum problem,, Izv. Math., 79 (2015), 894-901.  doi: 10.4213/im8413.  Google Scholar

[5]

A. Broman, A mechanical problem by H. Whitney, Nordisk Matematisk Tidskrift, 6 (1958), 78-82.   Google Scholar

[6]

A. CapiettoJ. Mawhin and F. Zanolin, Continuation theorems for periodic perturbations of autonomous systems, Trans. Amer. Math. Soc., 329 (1992), 41-72.  doi: 10.1090/S0002-9947-1992-1042285-7.  Google Scholar

[7]

L. Consolini and M. Tosques, On the existence of small periodic solutions for 2-dimensional inverted pendulum on a cart, SIAM J. Appl. Math., 68 (2007), 486-502.  doi: 10.1137/070683404.  Google Scholar

[8]

L. Consolini and M. Tosques, On the exact tracking of the spherical inverted pendulum via a homotopy method, Systems Control Lett., 58 (2009), 1-6.  doi: 10.1016/j.sysconle.2008.06.010.  Google Scholar

[9]

L. Consolini and M. Tosques, A continuation theorem on periodic solutions of regular nonlinear systems and its application to the exact tracking problem for the inverted spherical pendulum,, Nonlinear Anal., 74 (2011), 9-26.  doi: 10.1016/j.na.2010.08.002.  Google Scholar

[10] R. Courant and H. Robbins, What is Mathematics? An Elementary Approach to Ideas and Methods, Oxford University Press, 1941.   Google Scholar
[11]

R. Courant and H. Robbins, What is Mathematics? An Elementary Approach to Ideas and Methods, 2nd edition revised by Ⅰ. Stewart, Oxford University Press, 1996.  Google Scholar

[12]

C. Davis, Christopher Zeeman Medal Award lecture, The London Math. Soc. Newsletter, 384 (2009), 33-34.   Google Scholar

[13]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[14]

A. Dold, Lectures on Algebraic Topology, 2nd edition, Springer-Verlag, Berlin, Heidelberg and New York, 1980.  Google Scholar

[15]

R. E. Gaines and J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Math., 568, Springer-Verlag, Berlin, Heidelberg and New York, 1977.  Google Scholar

[16]

L. Gillman, Review of "What is Mathematics?" by Richard Courant and Herbert Robbins, revised by Ian Stewart, Amer. Math. Monthly, 105 (1998), 485-488.  doi: 10.2307/3109832.  Google Scholar

[17]

J. E. Littlewood, A Mathematician's Miscellany, Methuen & Co., London, 1953.  Google Scholar

[18]

J. R. Newman (ed.), The World of Mathematics, Vol. Ⅳ., Allen & Unwin, London, 1960. Google Scholar

[19]

I. Polekhin, Examples of topological approach to the problem of inverted pendulum with moving pivot point, (Russian), Nelin. Dinam., 10 (2014), 465-472.   Google Scholar

[20]

I. Polekhin, Periodic and falling-free motion of an inverted spherical pendulum with a moving pivot point, preprint, arXiv: 1411.1585. Google Scholar

[21]

T. Poston, Au courant with differential equations, Manifold, 18 (1976), 6-9.   Google Scholar

[22]

R. Srzednicki, On rest points of dynamical systems, Fund. Math., 126 (1985), 69-81.  doi: 10.4064/fm-126-1-69-81.  Google Scholar

[23]

R. Srzednicki, Periodic and constant solutions via topological principle of Ważewski, Univ. Iagel. Acta Math., 26 (1987), 183-190.   Google Scholar

[24]

R. Srzednicki, Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations, Nonlinear Anal., 22 (1994), 707-737.  doi: 10.1016/0362-546X(94)90223-2.  Google Scholar

[25]

R. Srzednicki, Ważewski method and Conley index, in Handbook of Ordinary Differential Equations, Vol Ⅰ., (eds. A. Cañada, P. Drábek and A. Fonda), Elsevier/North Holland, Amsterdam, (2004), 591-684.  Google Scholar

[26]

I. Stewart, Gem, Set and Math, Blackwell Ltd., London, 1989.  Google Scholar

[27]

F. Zanolin, Bound sets, periodic solutions and flow-invariance for ordinary differential equations in $\mathbb R^n$: Some remarks, Rend. Ist. Mat. Univ. Trieste, 19 (1987), 76-92.   Google Scholar

[28]

O. Zubelevich, Bounded solutions to the system of second order ODEs and the Whitney pendulum, Appl. Math. (Warsaw), 42 (2015), 159-165.  doi: 10.4064/am42-2-3.  Google Scholar

show all references

References:
[1]

V. I. Arnol'd, What is Mathematics?, (Russian), MCNMO, Moscow, 2002. Google Scholar

[2]

V. I. Arnol'd, Mathematical Understanding of Nature, (Russian), MCNMO, Moscow, 2009. English translation: V. I. Arnold, Mathematical Understanding of Nature, Amer. Math. Soc., Providence, R. I., 2014. doi: 10.1090/mbk/085.  Google Scholar

[3]

B. E. Blank, Book review "What is Mathematics? An Elementary Approach to Ideas and Methods", Notices Amer. Math. Soc., 48 (2001), 1325-1329.   Google Scholar

[4]

S. V. Bolotin and V. V. Kozlov, Calculus of variations in the large, existence of trajectories in a domain with boundary, and Whitney's inverted pendulum problem,, Izv. Math., 79 (2015), 894-901.  doi: 10.4213/im8413.  Google Scholar

[5]

A. Broman, A mechanical problem by H. Whitney, Nordisk Matematisk Tidskrift, 6 (1958), 78-82.   Google Scholar

[6]

A. CapiettoJ. Mawhin and F. Zanolin, Continuation theorems for periodic perturbations of autonomous systems, Trans. Amer. Math. Soc., 329 (1992), 41-72.  doi: 10.1090/S0002-9947-1992-1042285-7.  Google Scholar

[7]

L. Consolini and M. Tosques, On the existence of small periodic solutions for 2-dimensional inverted pendulum on a cart, SIAM J. Appl. Math., 68 (2007), 486-502.  doi: 10.1137/070683404.  Google Scholar

[8]

L. Consolini and M. Tosques, On the exact tracking of the spherical inverted pendulum via a homotopy method, Systems Control Lett., 58 (2009), 1-6.  doi: 10.1016/j.sysconle.2008.06.010.  Google Scholar

[9]

L. Consolini and M. Tosques, A continuation theorem on periodic solutions of regular nonlinear systems and its application to the exact tracking problem for the inverted spherical pendulum,, Nonlinear Anal., 74 (2011), 9-26.  doi: 10.1016/j.na.2010.08.002.  Google Scholar

[10] R. Courant and H. Robbins, What is Mathematics? An Elementary Approach to Ideas and Methods, Oxford University Press, 1941.   Google Scholar
[11]

R. Courant and H. Robbins, What is Mathematics? An Elementary Approach to Ideas and Methods, 2nd edition revised by Ⅰ. Stewart, Oxford University Press, 1996.  Google Scholar

[12]

C. Davis, Christopher Zeeman Medal Award lecture, The London Math. Soc. Newsletter, 384 (2009), 33-34.   Google Scholar

[13]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[14]

A. Dold, Lectures on Algebraic Topology, 2nd edition, Springer-Verlag, Berlin, Heidelberg and New York, 1980.  Google Scholar

[15]

R. E. Gaines and J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Math., 568, Springer-Verlag, Berlin, Heidelberg and New York, 1977.  Google Scholar

[16]

L. Gillman, Review of "What is Mathematics?" by Richard Courant and Herbert Robbins, revised by Ian Stewart, Amer. Math. Monthly, 105 (1998), 485-488.  doi: 10.2307/3109832.  Google Scholar

[17]

J. E. Littlewood, A Mathematician's Miscellany, Methuen & Co., London, 1953.  Google Scholar

[18]

J. R. Newman (ed.), The World of Mathematics, Vol. Ⅳ., Allen & Unwin, London, 1960. Google Scholar

[19]

I. Polekhin, Examples of topological approach to the problem of inverted pendulum with moving pivot point, (Russian), Nelin. Dinam., 10 (2014), 465-472.   Google Scholar

[20]

I. Polekhin, Periodic and falling-free motion of an inverted spherical pendulum with a moving pivot point, preprint, arXiv: 1411.1585. Google Scholar

[21]

T. Poston, Au courant with differential equations, Manifold, 18 (1976), 6-9.   Google Scholar

[22]

R. Srzednicki, On rest points of dynamical systems, Fund. Math., 126 (1985), 69-81.  doi: 10.4064/fm-126-1-69-81.  Google Scholar

[23]

R. Srzednicki, Periodic and constant solutions via topological principle of Ważewski, Univ. Iagel. Acta Math., 26 (1987), 183-190.   Google Scholar

[24]

R. Srzednicki, Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations, Nonlinear Anal., 22 (1994), 707-737.  doi: 10.1016/0362-546X(94)90223-2.  Google Scholar

[25]

R. Srzednicki, Ważewski method and Conley index, in Handbook of Ordinary Differential Equations, Vol Ⅰ., (eds. A. Cañada, P. Drábek and A. Fonda), Elsevier/North Holland, Amsterdam, (2004), 591-684.  Google Scholar

[26]

I. Stewart, Gem, Set and Math, Blackwell Ltd., London, 1989.  Google Scholar

[27]

F. Zanolin, Bound sets, periodic solutions and flow-invariance for ordinary differential equations in $\mathbb R^n$: Some remarks, Rend. Ist. Mat. Univ. Trieste, 19 (1987), 76-92.   Google Scholar

[28]

O. Zubelevich, Bounded solutions to the system of second order ODEs and the Whitney pendulum, Appl. Math. (Warsaw), 42 (2015), 159-165.  doi: 10.4064/am42-2-3.  Google Scholar

[1]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[2]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[3]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[4]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[5]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[6]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020394

[7]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[8]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[9]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[10]

Gaojun Luo, Xiwang Cao. Two classes of near-optimal codebooks with respect to the Welch bound. Advances in Mathematics of Communications, 2021, 15 (2) : 279-289. doi: 10.3934/amc.2020066

[11]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[12]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[13]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[14]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[15]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[16]

Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071

[17]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[18]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[19]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[20]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (120)
  • HTML views (511)
  • Cited by (0)

Other articles
by authors

[Back to Top]