\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Positive solutions of doubly coupled multicomponent nonlinear Schrödinger systems

  • * Corresponding author: Rushun Tian and Zhi-Qiang Wang

    * Corresponding author: Rushun Tian and Zhi-Qiang Wang 
This paper is supported by Beijing Natural Science Foundation (1174013), National Natural Science Foundation of China (11601353, 11771302, 11771324, 11671026, 11831009).
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we study the following doubly coupled multicomponent system

    $ \begin{equation*} \left\{\begin{array}{ll} -\Delta u_j + \lambda_ju_j+ \sum_{k\neq j}\gamma_{jk}u_k = \mu_ju_j^3+ u_j\sum_{k\neq j}\beta_{jk}u_k^2,\\ u_j(x)\geq0\ \ \hbox{and}\ \ u_j\in H_0^1(\Omega), \end{array} \right. \end{equation*} $

    where $ \Omega\subset \mathbb{R} ^N $ and $ N = 2,3 $; $ \lambda_j, \gamma_{jk} = \gamma_{kj}, \mu_j, \beta_{jk} = \beta_{kj} $ are constants, $ j, k = 1, 2, ..., n $, $ n\geq 2 $. We prove some existence and nonexistence results for positive solutions of this system. If the system is fully symmetric, i.e. $ \lambda_j\equiv\lambda, \gamma_{jk}\equiv\gamma, \mu_j\equiv\mu, \beta_{jk}\equiv\beta $, we study the multiplicity and bifurcation phenomena of positive solution.

    Mathematics Subject Classification: 35B05, 35J61, 58C40, 35J15, 58E07.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. AmbrosettiG. Cerami and D. Ruiz, Solitons of linearly coupled systems of semilinear non-autonomous equations on $ \mathbb{R} ^n$, J. Funct. Anal., 254 (2008), 2816-2845.  doi: 10.1016/j.jfa.2007.11.013.
    [2] A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris, 342 (2006), 453-458.  doi: 10.1016/j.crma.2006.01.024.
    [3] A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75 (2007), 67-82.  doi: 10.1112/jlms/jdl020.
    [4] T. Bartsch, Bifurcation in a multicomponent system of nonlinear Schrödinger equations, J. Fixed Point Theory Appl., 13 (2013), 37-50.  doi: 10.1007/s11784-013-0109-4.
    [5] T. BartschE. N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Vari. Part. Diff. Equ., 37 (2010), 345-361.  doi: 10.1007/s00526-009-0265-y.
    [6] T. BartschR. Tian and Z.-Q. Wang, Bifurcations for a coupled Schr dinger system with multiple components,, Angew. Math. Phys., 66 (2015), 2109-2123.  doi: 10.1007/s00033-015-0498-x.
    [7] T. Bartsch and Z.-Q. Wang, Note on ground states of nonlinear Schrödinger systems, J. Part. Diff. Equ., 19 (2006), 200-207. 
    [8] T. BartschZ.-Q. Wang and J. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2 (2007), 353-367.  doi: 10.1007/s11784-007-0033-6.
    [9] G. Dai, R. Tian and Z. Zhang, Global bifurcations and a priori bounds of positive solutions for coupled nonlinear Schrödinger systems., Preprint.
    [10] E.N. DancerJ. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969.  doi: 10.1016/j.anihpc.2010.01.009.
    [11] B. Deconinck, P. G. Kevrekidis, H. E. Nistazakis and D. J. Frantzeskakis, Linearly coupled Bose-Einstein condensates: From Rabi oscillations and quasiperiodic solutions to oscillating domain walls and spiral waves, Phys. Rev. A, 70 (2004), 063605.
    [12] B. D. EsryC. H. GreeneJ. P. Burke Jr and J. L. Bohn, Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78 (1997), 3594-3597. 
    [13] P. M. FitzpatrickI. Massabò and J. Pejsachowicz, Global several-parameter bifurcation and continuation thereoms: a Unified approach via complementing maps, Math. Ann., 263 (1983), 61-73.  doi: 10.1007/BF01457084.
    [14] K. Li and Z. Zhang, Existence of solutions for a Schrödinger system with linear and nonlinear couplings, J. Math. Phys., 57 (2016), 081504, 17pp.  doi: 10.1063/1.4960046.
    [15] T. Lin and J. Wei, Ground state of $N$ Coupled Nonlinear Schrödinger equations in $ \mathbb{R} ^n, n\leq3 $, Commun. Math. Phys., 255 (2005), 629-653.  doi: 10.1007/s00220-005-1313-x.
    [16] T. Lin and J. Wei, Solitary and self-similar solutions of two-component system of nonlinear Schrödinger equations, Physics D: Nonlinear Phenomena, 220 (2006), 99-115.  doi: 10.1016/j.physd.2006.07.009.
    [17] Z. Liu and Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phy., 282 (2008), 721-731.  doi: 10.1007/s00220-008-0546-x.
    [18] Z. Liu and Z.-Q. Wang, Ground states and bound states of a nonlinear Schrödinger system, Advanced Nonlinear Studies, 10 (2010), 175-193.  doi: 10.1515/ans-2010-0109.
    [19] L. A. MaiaE. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Diff. Equ., 299 (2006), 743-767.  doi: 10.1016/j.jde.2006.07.002.
    [20] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian System, Spinger-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2061-7.
    [21] M. MitchellZ. ChenM. Shih and M. Segev, Self-trapping of partially spatially incoherent light, Phys. Rev. Lett., 77 (1996), 490-493. 
    [22] Ch. RüeggN. CavadiniA. FurrerH.-U. GüdelK. KrämerH. MutkaA. WildesK. Habicht and P. Vorderwischu, Bose-Einstein condensation of the triplet states in the magnetic insulator TlCuCl3, Nature, 423 (2003), 62-65. 
    [23] B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $ \mathbb{R} ^n$, Comm. Math. Phys., 271 (2007), 199-221.  doi: 10.1007/s00220-006-0179-x.
    [24] R. Tian and Z.-Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems, Topol. Methods Nonlinear Anal., 37 (2011), 203-223. 
    [25] R. Tian and Z.-Q. Wang, Bifurcation results on positive solutions of an indefinite nonlinear elliptic system, Discrete Contin. Dyn. Syst. - Series A, 33 (2013), 335-344.  doi: 10.3934/dcds.2013.33.335.
    [26] R. Tian and Z.-Q. Wang, Bifurcation results on positive solutions of an indefinite nonlinear elliptic system Ⅱ, Adv. Nonlinear Stud., 13 (2013), 245-262.  doi: 10.1515/ans-2013-0115.
    [27] R. Tian and Z.-T. Zhang, Existence and bifurcation of solutions for a double coupled system of Schrödinger equations, Sci. China Math., 58 (2015), 1607-1620.  doi: 10.1007/s11425-015-5028-y.
    [28] Z.-Q. Wang, A Zp index theory, Acta Mathematica Sinica, New Series, 6 (1990), 18-23.  doi: 10.1007/BF02108859.
    [29] J. Wei and T. Weth, Nonradial symmetric bound states for a system of two coupled Schrödinger equations, Rend. Lincei Mat. Appl., 18 (2007), 279-293.  doi: 10.4171/RLM/495.
  • 加载中
SHARE

Article Metrics

HTML views(789) PDF downloads(310) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return