November  2019, 12(7): 2195-2209. doi: 10.3934/dcdss.2019141

Bifurcation analysis of a stage-structured predator-prey model with prey refuge

a. 

School of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China

b. 

School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China

c. 

School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China

* Corresponding author: Huaqin Peng

Received  July 2017 Revised  July 2018 Published  December 2018

Fund Project: The research is supported by NNSF of China grant 11301102, 11771104, 11701113, Guangzhou Education Bureau 1201431215 and Key Laboratory of Mathematics and Statistical Model of Guangxi Colleges Open Foundation 2017GXKLMS007.

A stage-structured predator-prey model with prey refuge is considered. Using the geometric stability switch criteria, we establish stability of the positive equilibrium. Stability and direction of periodic solutions arising from Hopf bifurcations are obtained by using the normal form theory and center manifold argument. Numerical simulations confirm the above theoretical results.

Citation: Qing Zhu, Huaqin Peng, Xiaoxiao Zheng, Huafeng Xiao. Bifurcation analysis of a stage-structured predator-prey model with prey refuge. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2195-2209. doi: 10.3934/dcdss.2019141
References:
[1]

W. G. Aiello and H. I. Freedman, A time-delay model of single-species growth with stage structure, Math. Biosci., 101 (1990), 139-153.  doi: 10.1016/0025-5564(90)90019-U.  Google Scholar

[2]

W. G. AielloH. I. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay, SIAM J. Appl. Math., 52 (1992), 855-869.  doi: 10.1137/0152048.  Google Scholar

[3]

J. F. M. Al-Omari, The Effect of State Dependent Delay and Harvesting on a Stage-structured Predator-prey Model, Elsevier Science Inc., (2015).  doi: 10.1016/j.amc.2015.08.119.  Google Scholar

[4]

Y. Z. Bai and X. P. Zhang, Stability and Hopf bifurcation in a diffusive predator-prey system with Beddington-DeAngelis functional response, Abstr. Appl. Anal., 2011 (2011), Art. ID 463721, 22 pp. doi: 10.1155/2011/463721.  Google Scholar

[5]

E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependant parameters, SIAM J. Math. Anal., 33 (2001), 1144-1165.  doi: 10.1137/S0036141000376086.  Google Scholar

[6]

F. ChenL. Chen and X. Xie, On a Leslie-Gower predator-prey model incorporaring a prey refuge, Nonlinear Anal. Real World Appl., 10 (2009), 2905-2908.  doi: 10.1016/j.nonrwa.2008.09.009.  Google Scholar

[7]

X. Y. Chen and L. H. Huang, A Filippov system describing the effect of prey refuge use on a ratio-dependent predator-prey model, J. Math. Anal. Appl., 428 (2015), 817-837.  doi: 10.1016/j.jmaa.2015.03.045.  Google Scholar

[8]

R. Cressmana and J. Garay, A predator-prey refuge system: Evolutionary stability in ecological systems, Theor. Popul. Bio., 76 (2009), 248-257.   Google Scholar

[9]

S. Devi, Effects of prey refuge on a ratio-dependent predator-prey model with stage-structure of prey population, Appl. Math. Model., 37 (2013), 4337-4349.  doi: 10.1016/j.apm.2012.09.045.  Google Scholar

[10]

E. Gonzalez-Olivares and R. Ramos-Jiliberto, Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability, Ecol. Model., 166 (2003), 135-146.   Google Scholar

[11]

Z. Gui and W. Ge, The effect of harvesting on a predator-prey system with stage structure, Ecol. Model., 187 (2005), 329-340.   Google Scholar

[12] B. D. HassardN. D. Kazarinoff and Y. H. Wan, Theory and Application of Hopf Bifurcation, Cambridge University Press, 1981.   Google Scholar
[13]

Y. HuangF. Chen and L. Zhong, Stability analysis of a predator-prey model with Honing type Ⅲ response function incorporating a prey refuge, Appl. Math. Comput., 182 (2006), 672-683.  doi: 10.1016/j.amc.2006.04.030.  Google Scholar

[14]

T. K. Kar and U. K. Pahari, Modelling and analysis of a prey-predator system with stage-structure and harvesting, Nonlinear Anal. Real World Appl., 8 (2007), 601-609.  doi: 10.1016/j.nonrwa.2006.01.004.  Google Scholar

[15]

Z. MaW. LiY. ZhaoW. WangH. Zhang and Z. Li, Effects of prey refuges on a predator-prey model with a class of functional response: The role of refuges, Math. Biosci., 218 (2009), 73-79.  doi: 10.1016/j.mbs.2008.12.008.  Google Scholar

[16]

J. M. McNair, The effects of refuges on predator-prey interactions: A reconsideration, Theor. Popul. Biol., 29 (1986), 38-63.  doi: 10.1016/0040-5809(86)90004-3.  Google Scholar

[17]

Y. Qu and J. J. Wei, Bifurcation analysis in a time-delay model for prey-predator growth with stage-structure, Nonlinear Dyn., 49 (2007), 285-294.  doi: 10.1007/s11071-006-9133-x.  Google Scholar

[18]

Y. Qu and J. J. Wei, Bifurcation analysis in a predator-prey system with stage-structure and harvesting, J. Franklin Inst., 347 (2010), 1097-1113.  doi: 10.1016/j.jfranklin.2010.03.017.  Google Scholar

[19]

X. Y. Song and L. S. Chen, Optimal harvesting and stability for a predator-prey system model with age structure, Acta Math. Appl. Sin., 18 (2002), 423-430.  doi: 10.1007/s102550200042.  Google Scholar

[20] J. J. WeiH. Wang and W. Jiang, The Bifurcations Theory and Applications of Differential Equations, Science Press, Beijing, 2012.   Google Scholar
[21]

A. A. Yakubu, Prey dominance in discrete predator-prey systems with a prey refuge, Math. Biosci., 144 (1997), 155-178.  doi: 10.1016/S0025-5564(97)00026-6.  Google Scholar

[22]

R. Z. Yang and C. R. Zhang, Dynamics in a diffusive predator-prey system with a constant prey refuge and delay, Nonlinear Anal. Real World Appl., 31 (2016), 1-22.  doi: 10.1016/j.nonrwa.2016.01.005.  Google Scholar

[23]

F. Zhang and Y. Li, Stability and Hopf bifurcation of a delayed-diffusive predator-prey model with hyperbolic mortality and nonlinear prey harvesting, Nonlinear Dynam., 88 (2017), 1397-1412.  doi: 10.1007/s11071-016-3318-8.  Google Scholar

show all references

References:
[1]

W. G. Aiello and H. I. Freedman, A time-delay model of single-species growth with stage structure, Math. Biosci., 101 (1990), 139-153.  doi: 10.1016/0025-5564(90)90019-U.  Google Scholar

[2]

W. G. AielloH. I. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay, SIAM J. Appl. Math., 52 (1992), 855-869.  doi: 10.1137/0152048.  Google Scholar

[3]

J. F. M. Al-Omari, The Effect of State Dependent Delay and Harvesting on a Stage-structured Predator-prey Model, Elsevier Science Inc., (2015).  doi: 10.1016/j.amc.2015.08.119.  Google Scholar

[4]

Y. Z. Bai and X. P. Zhang, Stability and Hopf bifurcation in a diffusive predator-prey system with Beddington-DeAngelis functional response, Abstr. Appl. Anal., 2011 (2011), Art. ID 463721, 22 pp. doi: 10.1155/2011/463721.  Google Scholar

[5]

E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependant parameters, SIAM J. Math. Anal., 33 (2001), 1144-1165.  doi: 10.1137/S0036141000376086.  Google Scholar

[6]

F. ChenL. Chen and X. Xie, On a Leslie-Gower predator-prey model incorporaring a prey refuge, Nonlinear Anal. Real World Appl., 10 (2009), 2905-2908.  doi: 10.1016/j.nonrwa.2008.09.009.  Google Scholar

[7]

X. Y. Chen and L. H. Huang, A Filippov system describing the effect of prey refuge use on a ratio-dependent predator-prey model, J. Math. Anal. Appl., 428 (2015), 817-837.  doi: 10.1016/j.jmaa.2015.03.045.  Google Scholar

[8]

R. Cressmana and J. Garay, A predator-prey refuge system: Evolutionary stability in ecological systems, Theor. Popul. Bio., 76 (2009), 248-257.   Google Scholar

[9]

S. Devi, Effects of prey refuge on a ratio-dependent predator-prey model with stage-structure of prey population, Appl. Math. Model., 37 (2013), 4337-4349.  doi: 10.1016/j.apm.2012.09.045.  Google Scholar

[10]

E. Gonzalez-Olivares and R. Ramos-Jiliberto, Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability, Ecol. Model., 166 (2003), 135-146.   Google Scholar

[11]

Z. Gui and W. Ge, The effect of harvesting on a predator-prey system with stage structure, Ecol. Model., 187 (2005), 329-340.   Google Scholar

[12] B. D. HassardN. D. Kazarinoff and Y. H. Wan, Theory and Application of Hopf Bifurcation, Cambridge University Press, 1981.   Google Scholar
[13]

Y. HuangF. Chen and L. Zhong, Stability analysis of a predator-prey model with Honing type Ⅲ response function incorporating a prey refuge, Appl. Math. Comput., 182 (2006), 672-683.  doi: 10.1016/j.amc.2006.04.030.  Google Scholar

[14]

T. K. Kar and U. K. Pahari, Modelling and analysis of a prey-predator system with stage-structure and harvesting, Nonlinear Anal. Real World Appl., 8 (2007), 601-609.  doi: 10.1016/j.nonrwa.2006.01.004.  Google Scholar

[15]

Z. MaW. LiY. ZhaoW. WangH. Zhang and Z. Li, Effects of prey refuges on a predator-prey model with a class of functional response: The role of refuges, Math. Biosci., 218 (2009), 73-79.  doi: 10.1016/j.mbs.2008.12.008.  Google Scholar

[16]

J. M. McNair, The effects of refuges on predator-prey interactions: A reconsideration, Theor. Popul. Biol., 29 (1986), 38-63.  doi: 10.1016/0040-5809(86)90004-3.  Google Scholar

[17]

Y. Qu and J. J. Wei, Bifurcation analysis in a time-delay model for prey-predator growth with stage-structure, Nonlinear Dyn., 49 (2007), 285-294.  doi: 10.1007/s11071-006-9133-x.  Google Scholar

[18]

Y. Qu and J. J. Wei, Bifurcation analysis in a predator-prey system with stage-structure and harvesting, J. Franklin Inst., 347 (2010), 1097-1113.  doi: 10.1016/j.jfranklin.2010.03.017.  Google Scholar

[19]

X. Y. Song and L. S. Chen, Optimal harvesting and stability for a predator-prey system model with age structure, Acta Math. Appl. Sin., 18 (2002), 423-430.  doi: 10.1007/s102550200042.  Google Scholar

[20] J. J. WeiH. Wang and W. Jiang, The Bifurcations Theory and Applications of Differential Equations, Science Press, Beijing, 2012.   Google Scholar
[21]

A. A. Yakubu, Prey dominance in discrete predator-prey systems with a prey refuge, Math. Biosci., 144 (1997), 155-178.  doi: 10.1016/S0025-5564(97)00026-6.  Google Scholar

[22]

R. Z. Yang and C. R. Zhang, Dynamics in a diffusive predator-prey system with a constant prey refuge and delay, Nonlinear Anal. Real World Appl., 31 (2016), 1-22.  doi: 10.1016/j.nonrwa.2016.01.005.  Google Scholar

[23]

F. Zhang and Y. Li, Stability and Hopf bifurcation of a delayed-diffusive predator-prey model with hyperbolic mortality and nonlinear prey harvesting, Nonlinear Dynam., 88 (2017), 1397-1412.  doi: 10.1007/s11071-016-3318-8.  Google Scholar

Figure 1.  For $ \tau\in[0,\bar{\tau}) $, the graph of $ S_0(\tau) $ and $ S_1(\tau) $
Figure 2.  For $ \tau = 0.6<\tau^* $ and the initial value $ " 1.0 , 1.0 " $, the positive equilibrium point of system (49) is stable
Figure 3.  For τ = 22 > τ* and the initial value " 0.81, 0.61 ", system (49) exhibits a periodic solution
[1]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[2]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[3]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[4]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[5]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[6]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[7]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[8]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[9]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[10]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[11]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[13]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[14]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[15]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[16]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[17]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[18]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[19]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[20]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (144)
  • HTML views (531)
  • Cited by (0)

Other articles
by authors

[Back to Top]