-
Previous Article
Orbit portraits in non-autonomous iteration
- DCDS-S Home
- This Issue
-
Next Article
Shadowing is generic on dendrites
Free probability on $ C^{*}$-algebras induced by hecke algebras over primes
1. | St. Ambrose Univ., Dept. of Math. & Stat., 421 Ambrose Hall, 518 W. Locust St., Davenport, IA 52803, USA |
2. | Univ. of Iowa, Dept. of Math., 14 McLean Hall, Iowa City, IA 52242, USA |
In this paper, we establish free-probabilistic models $ \left( \mathcal{H}(G_{p}),\text{ }\psi _{p}\right)$ on Hecke algebras $ \mathcal{H}(G_{p})$, and construct Hilbert-space representations of $ \mathcal{H} (G_{p}),$ preserving free-probabilistic information from $ \left( \mathcal{H}(G_{p}),\text{ }\psi _{p}\right) ,$ for primes $ p.$ From such free-probabilistic structures with representations, we study spectral properties of operators in $ C^{*}$-algebras generated by $ \left\{ \mathcal{H}(G_{p})\right\}_{p:primes}$, via their free distributions.
References:
[1] |
K. Abu-Ghanem, D. Alpay, F. Colombo and I. Sabadini,
Gleason's problem and schur multipliers in the multivariable quaternionic setting, J. Math. Anal. Appl., 425 (2015), 1083-1096.
doi: 10.1016/j.jmaa.2015.01.022. |
[2] |
D. Alpay, F. Colombo and I. Sabadini,
Inner product spaces and krein spaces in the quaternionic setting, recent adv. inverse scattering, schur anal. stochastic process, Opre. Theo., Adv. Appl., 224 (2015), 33-65.
doi: 10.1007/978-3-319-10335-8_4. |
[3] |
D. Alpay, P. E. T. Jorgensen and G. Salomon,
On free stochastic processes and their derivatives, Stochast. Process. Appl., 124 (2014), 3392-3411.
doi: 10.1016/j.spa.2014.05.007. |
[4] |
M. Aschbacher, Finite Group Theory, Second edition. Cambridge Studies in Advanced Mathematics, 10. Cambridge University Press, Cambridge, 2000.
doi: 10.1017/CBO9781139175319. |
[5] |
J.-B. Bost, A. Connes and Hecke Algebras,
Type Ⅲ-factors and phase transitions with spontaneous symmetry breaking in number theory, Selecta. Math. New Series, 1 (1995), 411-457.
doi: 10.1007/BF01589495. |
[6] |
D. Bump, Automorphic Forms and Representations, Cambridge Studies in Advanced Mathematics, 55. Cambridge University Press, Cambridge, 1997.
doi: 10.1017/CBO9780511609572. |
[7] |
I. Cho,
p-adic Banach-space operators and adelic Banach-space operators, Opuscula Math., 34 (2014), 29-65.
doi: 10.7494/OpMath.2014.34.1.29. |
[8] |
I. Cho,
Operators induced by prime numbers, Methods Appl. Math., 19 (2012), 313-339.
doi: 10.4310/MAA.2012.v19.n4.a1. |
[9] |
I. Cho,
Certain group dynamical systems induced by hecke algebras, Opuscula Math., 36 (2016), 337-373.
doi: 10.7494/OpMath.2016.36.3.337. |
[10] |
I. Cho,
Free probability on hecke algebras and certain group algebras induced by Hecke algebras, Opuscula Math., 36 (2016), 153-187.
doi: 10.7494/OpMath.2016.36.2.153. |
[11] |
I. Cho,
Free probability on $ W^{*}$-dynamical systems determined by general linear group $ GL_{2}(\Bbb{Q}_{p})$, Bollettino dell'Unione Math. Italiana, 10 (2017), 725-764.
doi: 10.1007/s40574-016-0111-z. |
[12] |
I. Cho,
Representations and corresponding operators induced by Hecke algebras, Compl. Anal. Oper. Theo., 10 (2016), 437-477.
doi: 10.1007/s11785-014-0418-7. |
[13] |
I. Cho and T. Gillespie,
Free probability on the Hecke algebra, Compl. Anal. Oper. Theo., 9 (2015), 1491-1531.
doi: 10.1007/s11785-014-0403-1. |
[14] |
I. Cho and P. E. T. Jorgensen,
Krein-space operators induced by Dirichlet characters, Special Issues: Contemp. Math. Amer. Math. Soc., 603 (2013), 3-33.
doi: 10.1090/conm/603/12046. |
[15] |
C. W. Curtis,
Note on the structure constants of Hecke algebras of induced representations of finite Chevalley groups, Pacific J. Math., 279 (2015), 181-202.
doi: 10.2140/pjm.2015.279.181. |
[16] |
T. Gillespie, Superposition of Zeroes of Automorphic L-Functions and Functoriality, Univ. of Iowa, 2010, PhD Thesis. |
[17] |
T. Gillespie,
Prime number theorems for Rankin-Selberg L-functions over number fields, Sci. China Math., 54 (2011), 35-46.
doi: 10.1007/s11425-010-4137-x. |
[18] |
D. Hilbert,
Mathematical problems, Bull. Ame. Math. Soc., 8 (1902), 437-479.
doi: 10.1090/S0002-9904-1902-00923-3. |
[19] |
G. Johnson,
A note on the double affine Hecke algebra of type $ GL_{2}$, Comm. Alg., 44 (2016), 1018-1032.
doi: 10.1080/00927872.2014.999924. |
[20] |
F. Radulescu,
Random matrices, amalgamated free products and subfactors of the $ C^{*}$-algebra of a free group of nonsingular index, Invent. Math., 115 (1994), 347-389.
|
[21] |
R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Amer. Math. Soc. Mem. 132 (1998), x+88 pp.
doi: 10.1090/memo/0627. |
[22] |
V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, P-adic analysis and mathematical physics, Ser. Soviet & East European Math., 1 (1994), xx+319 pp.
doi: 10.1142/1581. |
[23] |
D. Voiculescu, K. Dykemma and A. Nica, Free Random Variables, American Mathematical Society, Providence, RI, 1992. |
[24] |
C. Zhong,
On the formal affine Hecke algebra, J. Inst. Math. Jussieu, 14 (2015), 837-855.
doi: 10.1017/S1474748014000188. |
show all references
References:
[1] |
K. Abu-Ghanem, D. Alpay, F. Colombo and I. Sabadini,
Gleason's problem and schur multipliers in the multivariable quaternionic setting, J. Math. Anal. Appl., 425 (2015), 1083-1096.
doi: 10.1016/j.jmaa.2015.01.022. |
[2] |
D. Alpay, F. Colombo and I. Sabadini,
Inner product spaces and krein spaces in the quaternionic setting, recent adv. inverse scattering, schur anal. stochastic process, Opre. Theo., Adv. Appl., 224 (2015), 33-65.
doi: 10.1007/978-3-319-10335-8_4. |
[3] |
D. Alpay, P. E. T. Jorgensen and G. Salomon,
On free stochastic processes and their derivatives, Stochast. Process. Appl., 124 (2014), 3392-3411.
doi: 10.1016/j.spa.2014.05.007. |
[4] |
M. Aschbacher, Finite Group Theory, Second edition. Cambridge Studies in Advanced Mathematics, 10. Cambridge University Press, Cambridge, 2000.
doi: 10.1017/CBO9781139175319. |
[5] |
J.-B. Bost, A. Connes and Hecke Algebras,
Type Ⅲ-factors and phase transitions with spontaneous symmetry breaking in number theory, Selecta. Math. New Series, 1 (1995), 411-457.
doi: 10.1007/BF01589495. |
[6] |
D. Bump, Automorphic Forms and Representations, Cambridge Studies in Advanced Mathematics, 55. Cambridge University Press, Cambridge, 1997.
doi: 10.1017/CBO9780511609572. |
[7] |
I. Cho,
p-adic Banach-space operators and adelic Banach-space operators, Opuscula Math., 34 (2014), 29-65.
doi: 10.7494/OpMath.2014.34.1.29. |
[8] |
I. Cho,
Operators induced by prime numbers, Methods Appl. Math., 19 (2012), 313-339.
doi: 10.4310/MAA.2012.v19.n4.a1. |
[9] |
I. Cho,
Certain group dynamical systems induced by hecke algebras, Opuscula Math., 36 (2016), 337-373.
doi: 10.7494/OpMath.2016.36.3.337. |
[10] |
I. Cho,
Free probability on hecke algebras and certain group algebras induced by Hecke algebras, Opuscula Math., 36 (2016), 153-187.
doi: 10.7494/OpMath.2016.36.2.153. |
[11] |
I. Cho,
Free probability on $ W^{*}$-dynamical systems determined by general linear group $ GL_{2}(\Bbb{Q}_{p})$, Bollettino dell'Unione Math. Italiana, 10 (2017), 725-764.
doi: 10.1007/s40574-016-0111-z. |
[12] |
I. Cho,
Representations and corresponding operators induced by Hecke algebras, Compl. Anal. Oper. Theo., 10 (2016), 437-477.
doi: 10.1007/s11785-014-0418-7. |
[13] |
I. Cho and T. Gillespie,
Free probability on the Hecke algebra, Compl. Anal. Oper. Theo., 9 (2015), 1491-1531.
doi: 10.1007/s11785-014-0403-1. |
[14] |
I. Cho and P. E. T. Jorgensen,
Krein-space operators induced by Dirichlet characters, Special Issues: Contemp. Math. Amer. Math. Soc., 603 (2013), 3-33.
doi: 10.1090/conm/603/12046. |
[15] |
C. W. Curtis,
Note on the structure constants of Hecke algebras of induced representations of finite Chevalley groups, Pacific J. Math., 279 (2015), 181-202.
doi: 10.2140/pjm.2015.279.181. |
[16] |
T. Gillespie, Superposition of Zeroes of Automorphic L-Functions and Functoriality, Univ. of Iowa, 2010, PhD Thesis. |
[17] |
T. Gillespie,
Prime number theorems for Rankin-Selberg L-functions over number fields, Sci. China Math., 54 (2011), 35-46.
doi: 10.1007/s11425-010-4137-x. |
[18] |
D. Hilbert,
Mathematical problems, Bull. Ame. Math. Soc., 8 (1902), 437-479.
doi: 10.1090/S0002-9904-1902-00923-3. |
[19] |
G. Johnson,
A note on the double affine Hecke algebra of type $ GL_{2}$, Comm. Alg., 44 (2016), 1018-1032.
doi: 10.1080/00927872.2014.999924. |
[20] |
F. Radulescu,
Random matrices, amalgamated free products and subfactors of the $ C^{*}$-algebra of a free group of nonsingular index, Invent. Math., 115 (1994), 347-389.
|
[21] |
R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Amer. Math. Soc. Mem. 132 (1998), x+88 pp.
doi: 10.1090/memo/0627. |
[22] |
V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, P-adic analysis and mathematical physics, Ser. Soviet & East European Math., 1 (1994), xx+319 pp.
doi: 10.1142/1581. |
[23] |
D. Voiculescu, K. Dykemma and A. Nica, Free Random Variables, American Mathematical Society, Providence, RI, 1992. |
[24] |
C. Zhong,
On the formal affine Hecke algebra, J. Inst. Math. Jussieu, 14 (2015), 837-855.
doi: 10.1017/S1474748014000188. |
[1] |
G. Mashevitzky, B. Plotkin and E. Plotkin. Automorphisms of categories of free algebras of varieties. Electronic Research Announcements, 2002, 8: 1-10. |
[2] |
Catarina Carvalho, Victor Nistor, Yu Qiao. Fredholm criteria for pseudodifferential operators and induced representations of groupoid algebras. Electronic Research Announcements, 2017, 24: 68-77. doi: 10.3934/era.2017.24.008 |
[3] |
Ilwoo Cho. Certain $*$-homomorphisms acting on unital $C^{*}$-probability spaces and semicircular elements induced by $p$-adic number fields over primes $p$. Electronic Research Archive, 2020, 28 (2) : 739-776. doi: 10.3934/era.2020038 |
[4] |
Le Li, Lihong Huang, Jianhong Wu. Cascade flocking with free-will. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 497-522. doi: 10.3934/dcdsb.2016.21.497 |
[5] |
Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725 |
[6] |
King-Yeung Lam, Daniel Munther. Invading the ideal free distribution. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3219-3244. doi: 10.3934/dcdsb.2014.19.3219 |
[7] |
Adina Juratoni, Flavius Pater, Olivia Bundău. Operator representations of logmodular algebras which admit $\gamma-$spectral $\rho-$dilations. Electronic Research Announcements, 2012, 19: 49-57. doi: 10.3934/era.2012.19.49 |
[8] |
Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431 |
[9] |
Bruce Geist and Joyce R. McLaughlin. Eigenvalue formulas for the uniform Timoshenko beam: the free-free problem. Electronic Research Announcements, 1998, 4: 12-17. |
[10] |
Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050 |
[11] |
David Jerison, Nikola Kamburov. Free boundaries subject to topological constraints. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7213-7248. doi: 10.3934/dcds.2019301 |
[12] |
Richard Sharp. Distortion and entropy for automorphisms of free groups. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 347-363. doi: 10.3934/dcds.2010.26.347 |
[13] |
Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10 |
[14] |
Bum Ja Jin, Mariarosaria Padula. In a horizontal layer with free upper surface. Communications on Pure and Applied Analysis, 2002, 1 (3) : 379-415. doi: 10.3934/cpaa.2002.1.379 |
[15] |
Hong-Kun Zhang. Free path of billiards with flat points. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4445-4466. doi: 10.3934/dcds.2012.32.4445 |
[16] |
John Murrough Golden. Constructing free energies for materials with memory. Evolution Equations and Control Theory, 2014, 3 (3) : 447-483. doi: 10.3934/eect.2014.3.447 |
[17] |
Robert Stephen Cantrell, Chris Cosner, Yuan Lou. Evolution of dispersal and the ideal free distribution. Mathematical Biosciences & Engineering, 2010, 7 (1) : 17-36. doi: 10.3934/mbe.2010.7.17 |
[18] |
Benoît Jubin, Norbert Poncin, Kyosuke Uchino. Free Courant and derived Leibniz pseudoalgebras. Journal of Geometric Mechanics, 2016, 8 (1) : 71-97. doi: 10.3934/jgm.2016.8.71 |
[19] |
Avner Friedman. Free boundary problems arising in biology. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 193-202. doi: 10.3934/dcdsb.2018013 |
[20] |
John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems and Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]