For every $ n ∈ {\mathbb N}$ we construct orientation preserving planar homeomorphisms $ g_n$ such that $ Fix(g_n)=\{0\}$, the fixed point index of $ g_n$ at $ 0$, $ i_{{\mathbb R}^2}(g_n,0)$, is equal to $ -n$ and the stable (respectively unstable) sets of $ g_n$ at $ 0$ decompose into exactly $ n+1$ connected branches $ \{U_{j}\}_{j ∈ \{1,2, \dots, n+1\}}$ (resp.$ \{U_{j}\}_{j ∈ \{1,2, \dots, n+1\}}$) such that:
a) $ S_i \cap S_j= \{0\} = U_i \cap U_j$ for any $ i, j ∈ \{1,2, \dotsn+1\}$ with $ i\ne j$.
b) $ S_i \cap U_j= \{0\}$ for any $ i, j ∈ \{1,2, \dots n+1\}$.
c) For every $ j ∈ \{1,2, \dots n+1\}$, $ S_j \setminus\{0\}$ and $ U_j \setminus \{0\}$ admit translation pseudo-arcs. This means that there exist pseudo-arcs $ K_j\subset S_j $ and points $ p_{j\star} , g_n(p_{j\star}) ∈ K_j$, such that $ g_n(K_j)\cap K_j=\{ g_n(p_{j\star} )\} $ and
$S_j\setminus \{ 0\}=\bigcup\limits_{m=-∞}^{∞} g_n^m (K_j)$
and analogously for $ U_j$.
We also study the closure of the class of above homeomorphisms in the (complete) metric space of planar orientation preserving homeomorphisms.
Citation: |
S. Baldwin
and E. E. Slaminka
, A stable/unstable "manifold" theorem for area preserving homeomorphisms of two dimensions, Proc. Amer. Math. Soc., 109 (1990)
, 823-828.
doi: 10.2307/2048225.![]() ![]() ![]() |
|
R. H. Bing
, Concerning hereditarily indecomposable compacta, Pacific J. Math., 1 (1951)
, 43-51.
doi: 10.2140/pjm.1951.1.43.![]() ![]() ![]() |
|
K. Borsuk, Theory of Shape, Monografie Matematyczne 59, PWN, Warsaw, 1975.
![]() ![]() |
|
L. E. Brouwer
, Beweis des ebenen Translationssatzes, Math. Annalen, 72 (1912)
, 37-54.
doi: 10.1007/BF01456888.![]() ![]() ![]() |
|
M. Brown
, A new proof of Brouwer's lemma on translation arcs, Houston J. Math., 10 (1984)
, 35-41.
![]() ![]() |
|
M. Brown
, Homeomorphisms of two-dimensional manifolds, Houston Math. J., 11 (1985)
, 455-469.
![]() ![]() |
|
R. F. Brown, The Lefschetz Fixed Point Theorem, Scott Foreman Co. Glenview Illinois, London, 1971.
![]() ![]() |
|
J. Campos
and R. Ortega
, Homeomorphisms of the disk with trivial dynamics and extinction of competitive systems, Journal Diff. Equations, 138 (1997)
, 157-170.
doi: 10.1006/jdeq.1997.3265.![]() ![]() ![]() |
|
C. O. Christenson and W. L. Voxman, Aspects of Topology, BCS Associates, Moscow, Idaho, 1998.
![]() ![]() |
|
E. N. Dancer
and R. Ortega
, The index or Lyapunov stable fixed points, Journal Dynamics and Diff. Equations, 6 (1994)
, 631-637.
doi: 10.1007/BF02218851.![]() ![]() ![]() |
|
A. Dold
, Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology, 4 (1965)
, 1-8.
doi: 10.1016/0040-9383(65)90044-3.![]() ![]() ![]() |
|
M. Handel
, A pathological area preserving $ C^{∞}$ diffeomorphism of the plane, Proc. Amer. Math. Soc., 86 (1982)
, 163-168.
doi: 10.2307/2044419.![]() ![]() ![]() |
|
F. Le Roux, Homomorphismes de surfaces - Thor$ \grave{e}$mes de la fleur de Leau-Fatou et de la variété stable,
Astrisque, 292 (2004), Vi+210pp.
![]() ![]() |
|
R. D. Nussbaum, The Fixed Point Index and Some Applications, Sminaire de Mathmatiques suprieures, Les Presses de L'Universit de Montral, 1985.
![]() ![]() |
|
F. R. Ruiz del Portal
and J. M. Salazar
, Fixed point index of iterations of local homeomorphisms of the plane: A Conley-index approach, Topology, 41 (2002)
, 1199-1212.
doi: 10.1016/S0040-9383(01)00035-0.![]() ![]() ![]() |
|
F. R. Ruiz del Portal
and J. M. Salazar
, A stable/unstable manifold theorem for local homeomorphisms of the plane, Ergodic Th. and Dynamical Systems, 25 (2005)
, 301-317.
doi: 10.1017/S0143385704000367.![]() ![]() ![]() |
|
F. R. Ruiz del Portal and J. M. Salazar, A Poincar formula for the fixed point indices of the iterations of arbitrary planar homeomorphisms, Fixed Point Theory Appl., (2010), ID233069, 31pp.
doi: 10.1155/2010/323069.![]() ![]() ![]() |
Periodic crooked chain of period 5.