In this paper we consider a $ d $-dimensional ($ d = 1, 2 $) parabolic-elliptic Keller-Segel equation with a logistic forcing and a fractional diffusion of order $ \alpha \in (0, 2) $. We prove uniform in time boundedness of its solution in the supercritical range $ \alpha>d\left(1-c\right) $, where $ c $ is an explicit constant depending on parameters of our problem. Furthermore, we establish sufficient conditions for $ \|u(t)-u_\infty\|_{L^\infty}\rightarrow0 $, where $ u_\infty\equiv 1 $ is the only nontrivial homogeneous solution. Finally, we provide a uniqueness result.
Citation: |
[1] |
P. Aceves-Sanchez and L. Cesbron, Fractional diffusion limit for a fractional Vlasov-Fokker-Planck equation, arXiv preprint, arXiv: 1606.07939, 2016.
![]() |
[2] |
P. Aceves-Sanchez and A. Mellet, Asymptotic analysis of a Vlasov-Boltzmann equation with anomalous scaling, arXiv preprint, arXiv: 1606.01023, 2016.
![]() |
[3] |
Y. Ascasibar, R. Granero-Belinchón and J. M. Moreno, An approximate treatment of gravitational collapse, Physica D: Nonlinear Phenomena, 262 (2013), 71-82.
doi: 10.1016/j.physd.2013.07.010.![]() ![]() ![]() |
[4] |
R. Atkinson, C. Rhodes, D. Macdonald and R. Anderson, Scale-free dynamics in the movement patterns of jackals, Oikos, 98 (2002), 134-140.
doi: 10.1034/j.1600-0706.2002.980114.x.![]() ![]() |
[5] |
F. Bartumeus, F. Peters, S. Pueyo, C. Marrasé and J. Catalan, Helical Lévy walks: adjusting searching statistics to resource availability in microzooplankton, Proceedings of the National Academy of Sciences, 100 (2003), 12771-12775.
doi: 10.1073/pnas.2137243100.![]() ![]() |
[6] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Towards a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Mathematical Models and Methods in Applied Sciences, 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X.![]() ![]() ![]() |
[7] |
A. Bellouquid, J. Nieto and L. Urrutia, About the kinetic description of fractional diffusion equations modeling chemotaxis, Mathematical Models and Methods in Applied Sciences, 26 (2016), 249-268.
doi: 10.1142/S0218202516400029.![]() ![]() ![]() |
[8] |
P. Biler, T. Cieślak, G. Karch and J. Zienkiewicz, Local criteria for blowup in two-dimensional chemotaxis models, Discrete Contin. Dyn. Syst., 37 (2017), 1841-1856.
doi: 10.3934/dcds.2017077.![]() ![]() ![]() |
[9] |
P. Biler and G. Karch, Blowup of solutions to generalized Keller-Segel model, Journal of Evolution equations, 10 (2010), 247–262.
doi: 10.1007/s00028-009-0048-0.![]() ![]() ![]() |
[10] |
P. Biler, G. Karch and P. Laurençot, Blowup of solutions to a diffusive aggregation model, Nonlinearity, 22 (2009), 1559.
doi: 10.1088/0951-7715/22/7/003.![]() ![]() |
[11] |
P. Biler and G. Wu, Two-dimensional chemotaxis models with fractional diffusion, Math. Methods Appl. Sci., 32 (2009), 112-126.
doi: 10.1002/mma.1036.![]() ![]() ![]() |
[12] |
A. Blanchet, On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher, Séminaire Laurent Schwartz -EDP et applications, 2013, 26pp.
![]() ![]() |
[13] |
A. Blanchet, J. Carrillo and N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in $\mathbb{R}^2$, Communications on Pure and Applied Mathematics, 61 (2008), 1449–1481.
doi: 10.1002/cpa.20225.![]() ![]() ![]() |
[14] |
N. Bournaveas and V. Calvez, The one-dimensional Keller-Segel model with fractional diffusion of cells, Nonlinearity, 23 (2010), 923–935.
doi: 10.1088/0951-7715/23/4/009.![]() ![]() ![]() |
[15] |
J. Burczak and R. Granero-Belinchón, Boundedness of large-time solutions to a chemotaxis model with nonlocal and semilinear flux, Topological Methods in Nonlinear Analysis, 47 (2016), 369–387.
![]() ![]() |
[16] |
J. Burczak and R. Granero-Belinchón, Critical Keller-Segel meets Burgers on $\mathbb{S}^1$: large-time smooth solutions, Nonlinearity, 29 (2016), 3810-3836.
doi: 10.1088/0951-7715/29/12/3810.![]() ![]() ![]() |
[17] |
J. Burczak and R. Granero-Belinchón, Global solutions for a supercritical drift-diffusion equation, Advances in Mathematics, 295 (2016), 334–367.
doi: 10.1016/j.aim.2016.03.011.![]() ![]() ![]() |
[18] |
J. Burczak and R. Granero-Belinchón, On a generalized doubly parabolic Keller-Segel system in one spatial dimension, Mathematical Models and Methods in the Applied Sciences, 26 (2016), 111-160.
doi: 10.1142/S0218202516500044.![]() ![]() ![]() |
[19] |
J. Burczak and R. Granero-Belinchón, Suppression of blow up by a logistic source in $2$ d Keller-Segel system with fractional dissipation, Journal of Differential Equations, 263 (2017), 6115-6142.
doi: 10.1016/j.jde.2017.07.007.![]() ![]() ![]() |
[20] |
J. Burczak, R. Granero-Belinchón and G. K. Luli, On the generalized Buckley-Leverett equation, Journal of Mathematical Physics, 57 (2016), 041501, 20 pp.
doi: 10.1063/1.4945786.![]() ![]() ![]() |
[21] |
F. A. Chalub, P. A. Markowich, B. Perthame, and C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits, In Nonlinear Differential Equation Models, Springer, 142 (2004), 123–141.
doi: 10.1007/s00605-004-0234-7.![]() ![]() ![]() |
[22] |
M. A. Chaplain and J. I. Tello, On the stability of homogeneous steady states of a chemotaxis system with logistic growth term, Applied Mathematics Letters, 57 (2016), 1-6.
doi: 10.1016/j.aml.2015.12.001.![]() ![]() ![]() |
[23] |
B. J. Cole, Fractal time in animal behaviour: The movement activity of drosophila, Animal Behaviour, 50 (1995), 1317-1324.
doi: 10.1016/0003-3472(95)80047-6.![]() ![]() |
[24] |
A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Communications in Mathematical Physics, 249 (2004), 511-528.
doi: 10.1007/s00220-004-1055-1.![]() ![]() ![]() |
[25] |
L. Corrias, B. Perthame and H. Zaag, A chemotaxis model motivated by angiogenesis, Comptes Rendus Mathematique, 336 (2003), 141-146.
doi: 10.1016/S1631-073X(02)00008-0.![]() ![]() ![]() |
[26] |
J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in $\Bbb R^2$, C. R. Math. Acad. Sci. Paris, 339 (2004), 611-616.
doi: 10.1016/j.crma.2004.08.011.![]() ![]() ![]() |
[27] |
C. Escudero, The fractional Keller-Segel model, Nonlinearity, 19 (2006), 2909-2918.
doi: 10.1088/0951-7715/19/12/010.![]() ![]() ![]() |
[28] |
G. Estrada-Rodriguez, H. Gimperlein and K. Painter, Fractional Patlak-Keller-Segel equations for chemotactic superdiffusion, SIAM Journal on Applied Mathematics, 78 (2018), 1155-1173.
doi: 10.1137/17M1142867.![]() ![]() ![]() |
[29] |
J. Fan and K. Zhao, Blow up criterion for a hyperbolic–parabolic system arising from chemotaxis, Journal of Mathematical Analysis and Applications, 394 (2012), 687-695.
doi: 10.1016/j.jmaa.2012.05.036.![]() ![]() ![]() |
[30] |
S. Focardi, P. Marcellini and P. Montanaro, Do ungulates exhibit a food density threshold? A field study of optimal foraging and movement patterns, Journal of Animal Ecology, 65 (1996), 606-620.
doi: 10.2307/5740.![]() ![]() |
[31] |
M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM journal on mathematical analysis, 33 (2002), 1330-1355.
doi: 10.1137/S0036141001385046.![]() ![]() ![]() |
[32] |
E. Galakhov, O. Salieva and J. I. Tello, On a parabolic–elliptic system with chemotaxis and logistic type growth, Journal of Differential Equations, 261 (2016), 4631-4647.
doi: 10.1016/j.jde.2016.07.008.![]() ![]() ![]() |
[33] |
R. Granero-Belinchón, On a drift–diffusion system for semiconductor devices, Annales Henri Poincaré, 17 (2016), 3473–3498.
doi: 10.1007/s00023-016-0493-6.![]() ![]() ![]() |
[34] |
R. Granero-Belinchón, Global solutions for a hyperbolic–parabolic system of chemotaxis, Journal of Mathematical Analysis and Applications, 449 (2017), 872-883.
doi: 10.1016/j.jmaa.2016.12.050.![]() ![]() ![]() |
[35] |
R. Granero-Belinchón, On the fractional Fisher information with applications to a hyperbolic–parabolic system of chemotaxis, Journal of Differential Equations, 262 (2017), 3250-3283.
doi: 10.1016/j.jde.2016.11.028.![]() ![]() ![]() |
[36] |
R. Granero-Belinchón and J. Hunter, On a nonlocal analog of the Kuramoto-Sivashinsky equation, Nonlinearity, 28 (2015), 1103-1133.
doi: 10.1088/0951-7715/28/4/1103.![]() ![]() ![]() |
[37] |
C. Hao, Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces, Zeitschrift für angewandte Mathematik und Physik, 63 (2012), 825–834.
doi: 10.1007/s00033-012-0193-0.![]() ![]() ![]() |
[38] |
T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3.![]() ![]() ![]() |
[39] |
T. Hillen, K. J. Painter and M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Models Methods Appl. Sci., 23 (2013), 165-198.
doi: 10.1142/S0218202512500480.![]() ![]() ![]() |
[40] |
W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc, 329 (1992), 819-824.
doi: 10.1090/S0002-9947-1992-1046835-6.![]() ![]() ![]() |
[41] |
E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology, 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5.![]() ![]() |
[42] |
E. F. Keller, Assessing the Keller-Segel model: How has it fared?, In Biological Growth and Spread, Springer, 38 (1980), 379–387.
![]() ![]() |
[43] |
E. F. Keller and L. A. Segel, Model for chemotaxis, Journal of Theoretical Biology, 30 (1971), 225-234.
doi: 10.1016/0022-5193(71)90050-6.![]() ![]() |
[44] |
J. Klafter, B. White and M. Levandowsky, Microzooplankton feeding behavior and the Lévy walk, In Biological motion, Springer, 1990,281–296.
doi: 10.1007/978-3-642-51664-1_20.![]() ![]() |
[45] |
J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differential Equations, 258 (2015), 1158-1191.
doi: 10.1016/j.jde.2014.10.016.![]() ![]() ![]() |
[46] |
C. Lattanzio and A. E. Tzavaras, From gas dynamics with large friction to gradient flows describing diffusion theories, Communications in Partial Differential Equations, 42 (2017), 261-290.
doi: 10.1080/03605302.2016.1269808.![]() ![]() ![]() |
[47] |
M. Levandowsky, B. White and F. Schuster, Random movements of soil amebas, Acta Protozoologica, 36 (1997), 237-248.
![]() |
[48] |
H. A. Levine, B. D. Sleeman and M. Nilsen-Hamilton, A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. i. the role of protease inhibitors in preventing angiogenesis, Mathematical biosciences, 168 (2000), 77-115.
doi: 10.1016/S0025-5564(00)00034-1.![]() ![]() ![]() |
[49] |
D. Li, T. Li and K. Zhao, On a hyperbolic–parabolic system modeling chemotaxis, Mathematical models and methods in applied sciences, 21 (2011), 1631-1650.
doi: 10.1142/S0218202511005519.![]() ![]() ![]() |
[50] |
D. Li, R. Pan and K. Zhao, Quantitative decay of a one-dimensional hybrid chemotaxis model with large data, Nonlinearity, 28 (2015), 2181-2210.
doi: 10.1088/0951-7715/28/7/2181.![]() ![]() ![]() |
[51] |
D. Li, J. Rodrigo and X. Zhang, Exploding solutions for a nonlocal quadratic evolution problem, Revista Matematica Iberoamericana, 26 (2010), 295-332.
doi: 10.4171/RMI/602.![]() ![]() ![]() |
[52] |
D. Li and J. L. Rodrigo, Finite-time singularities of an aggregation equation in $\mathbb{R}^n$ with fractional dissipation, Communications in Mathematical Physics, 287 (2009), 687-703.
doi: 10.1007/s00220-008-0669-0.![]() ![]() ![]() |
[53] |
D. Li and J. L. Rodrigo, Refined blowup criteria and nonsymmetric blowup of an aggregation equation, Advances in Mathematics, 220 (2009), 1717-1738.
doi: 10.1016/j.aim.2008.10.016.![]() ![]() ![]() |
[54] |
D. Li and J. L. Rodrigo, Wellposedness and regularity of solutions of an aggregation equation, Revista Matemática Iberoamericana, 26 (2010), 261–294.
doi: 10.4171/RMI/601.![]() ![]() ![]() |
[55] |
H. Li and K. Zhao, Initial–boundary value problems for a system of hyperbolic balance laws arising from chemotaxis, Journal of Differential Equations, 258 (2015), 302–338.
doi: 10.1016/j.jde.2014.09.014.![]() ![]() ![]() |
[56] |
J. Li, T. Li and Z.-A. Wang, Stability of traveling waves of the Keller–Segel system with logarithmic sensitivity, Mathematical Models and Methods in Applied Sciences, 24 (2014), 2819-2849.
doi: 10.1142/S0218202514500389.![]() ![]() ![]() |
[57] |
T. Li, R. Pan and K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM Journal on Applied Mathematics, 72 (2012), 417-443.
doi: 10.1137/110829453.![]() ![]() ![]() |
[58] |
T. Li and Z.-A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM Journal on Applied Mathematics, 70 (2009), 1522-1541.
doi: 10.1137/09075161X.![]() ![]() ![]() |
[59] |
T. Li and Z.-A. Wang, Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic–parabolic system arising in chemotaxis, Mathematical Models and Methods in Applied Sciences, 20 (2010), 1967-1998.
doi: 10.1142/S0218202510004830.![]() ![]() ![]() |
[60] |
K. Lin and C. Mu, Global dynamics in a fully parabolic chemotaxis system with logistic source, Discrete and Continuous Dynamical Systems, 36 (2016), 5025-5046.
doi: 10.3934/dcds.2016018.![]() ![]() ![]() |
[61] |
M. Mei, H. Peng and Z.-A. Wang, Asymptotic profile of a parabolic–hyperbolic system with boundary effect arising from tumor angiogenesis, Journal of Differential Equations, 259 (2015), 5168-5191.
doi: 10.1016/j.jde.2015.06.022.![]() ![]() ![]() |
[62] |
A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Archive for Rational Mechanics and Analysis, 199 (2011), 493-525.
doi: 10.1007/s00205-010-0354-2.![]() ![]() ![]() |
[63] |
T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Advances in Mathematical Sciences and Applications, 5 (1995), 581-601.
![]() ![]() |
[64] |
C. Patlak, Random walk with persistence and external bias, Bulletin of Mathematical Biology, 15 (1953), 311-338.
doi: 10.1007/BF02476407.![]() ![]() ![]() |
[65] |
D. A. Raichlen, B. M. Wood, A. D. Gordon, A. Z. Mabulla, F. W. Marlowe and H. Pontzer, Evidence of Lévy walk foraging patterns in human hunter–gatherers, Proceedings of the National Academy of Sciences, 111 (2014), 728-733.
doi: 10.1073/pnas.1318616111.![]() ![]() |
[66] |
R. B. Salako and W. Shen, Global existence and asymptotic behavior of classical solutions to a parabolic–elliptic chemotaxis system with logistic source on $\mathbb{R}^n$, Journal of Differential Equations, 262 (2017), 5635-5690.
doi: 10.1016/j.jde.2017.02.011.![]() ![]() ![]() |
[67] |
M. F. Shlesinger and J. Klafter, Lévy walks versus Lévy flights, In On Growth and Form, Springer, 1986,279–283.
doi: 10.1007/978-94-009-5165-5_29.![]() ![]() |
[68] |
B. D. Sleeman, M. J. Ward and J. Wei, The existence and stability of spike patterns in a chemotaxis model, SIAM Journal on Applied Mathematics, 65 (2005), 790-817.
doi: 10.1137/S0036139902415117.![]() ![]() ![]() |
[69] |
A. Stevens and H. G. Othmer, Aggregation, blowup, and collapse: The ABC's of taxis in reinforced random walks, SIAM Journal on Applied Mathematics, 57 (1997), 1044-1081.
doi: 10.1137/S0036139995288976.![]() ![]() ![]() |
[70] |
Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704.
doi: 10.1137/100802943.![]() ![]() ![]() |
[71] |
J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.
doi: 10.1080/03605300701319003.![]() ![]() ![]() |
[72] |
J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413-1425.
doi: 10.1088/0951-7715/25/5/1413.![]() ![]() ![]() |
[73] |
P. F. Verhulst, Recherches mathématiques sur la loi d'accroissement de la population, Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Bruxelles, 18 (1845), 1–42.
![]() |
[74] |
G. Viswanathan, V. Afanasyev, S. Buldyrev, E. Murphy, P. Prince and H. E. Stanley, Lévy flight search patterns of wandering albatrosses, Nature, 381 (1996), 413-415.
doi: 10.1038/381413a0.![]() ![]() |
[75] |
Z. Wang and T. Hillen, Shock formation in a chemotaxis model, Mathematical Methods in the Applied Sciences, 31 (2008), 45-70.
doi: 10.1002/mma.898.![]() ![]() ![]() |
[76] |
Z.-A. Wang, Z. Xiang and P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, Journal of Differential Equations, 260 (2016), 2225-2258.
doi: 10.1016/j.jde.2015.09.063.![]() ![]() ![]() |
[77] |
M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.
doi: 10.1080/03605300903473426.![]() ![]() ![]() |
[78] |
M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, Journal of Differential Equations, 257 (2014), 1056-1077.
doi: 10.1016/j.jde.2014.04.023.![]() ![]() ![]() |
[79] |
G. Wu and X. Zheng, On the well-posedness for Keller-Segel system with fractional diffusion, Math. Methods Appl. Sci., 34 (2011), 1739-1750.
doi: 10.1002/mma.1480.![]() ![]() ![]() |
[80] |
T. Xiang, How strong a logistic damping can prevent blow-up for the minimal Keller-Segel chemotaxis system?, J. Math. Anal. Appl., 459 (2018), 1172-1200.
doi: 10.1016/j.jmaa.2017.11.022.![]() ![]() ![]() |
[81] |
W. Xie, Y. Zhang, Y. Xiao and W. Wei, Global existence and convergence rates for the strong solutions in to the 3d chemotaxis model, Journal of Applied Mathematics, 2013 (2013), Art. ID 391056, 9 pp.
![]() ![]() |
[82] |
M. Zhang and C. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proceedings of the American Mathematical Society, 135 (2007), 1017-1027.
doi: 10.1090/S0002-9939-06-08773-9.![]() ![]() ![]() |
[83] |
Y. Zhang, Z. Tan and M.-B. Sun, Global existence and asymptotic behavior of smooth solutions to a coupled hyperbolic-parabolic system, Nonlinear Analysis: Real World Applications, 14 (2013), 465-482.
doi: 10.1016/j.nonrwa.2012.07.009.![]() ![]() ![]() |
[84] |
Y. Zhang and W. Xie, Global existence and exponential stability for the strong solutions in H2 to the 3-d chemotaxis model, Boundary Value Problems, 2015 (2015), 1-13.
doi: 10.1186/s13661-015-0375-8.![]() ![]() ![]() |
[85] |
J. Zheng, Boundedness and global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with nonlinear logistic source, Journal of Mathematical Analysis and Applications, 450 (2017), 1047-1061.
doi: 10.1016/j.jmaa.2017.01.043.![]() ![]() ![]() |