February  2020, 13(2): 165-176. doi: 10.3934/dcdss.2020009

Global existence in the 1D quasilinear parabolic-elliptic chemotaxis system with critical nonlinearity

1. 

Institute of Mathematics, Polish Academy of Sciences, Warsaw, 00-656, Poland

2. 

Department of Mathematics, Tokyo University of Science, Tokyo, 162-8601, Japan

* Corresponding author: Tomasz Cieślak

Received  May 2017 Revised  January 2018 Published  January 2019

The paper should be viewed as complement of an earlier result in [10]. In the paper just mentioned it is shown that 1d case of a quasilinear parabolic-elliptic Keller-Segel system is very special. Namely, unlike in higher dimensions, there is no critical nonlinearity. Indeed, for the nonlinear diffusion of the form $ 1/u $ all the solutions, independently on the magnitude of initial mass, stay bounded. However, the argument presented in [10] deals with the Jäger-Luckhaus type system. And is very sensitive to this restriction. Namely, the change of variables introduced in [10], being a main step of the method, works only for the Jäger-Luckhaus modification. It does not seem to be applicable in the usual version of the parabolic-elliptic Keller-Segel system. The present paper fulfils this gap and deals with the case of the usual parabolic-elliptic version. To handle it we establish a new Lyapunov-like functional (it is related to what was done in [10]), which leads to global existence of the initial-boundary value problem for any initial mass.

Citation: Tomasz Cieślak, Kentarou Fujie. Global existence in the 1D quasilinear parabolic-elliptic chemotaxis system with critical nonlinearity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 165-176. doi: 10.3934/dcdss.2020009
References:
[1]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[2]

B. Bieganowski, T. Cieślak, K. Fujie and T. Senba, Boundedness of solutions to the critical fully parabolic quasilinear one-dimensional Keller-Segel system, Math. Nachr., to appear. Google Scholar

[3]

P. BilerW. Hebisch and T. Nadzieja, The Debye system: Existence and large time behavior of solutions, Nonlinear Anal., 23 (1994), 1189-1209.  doi: 10.1016/0362-546X(94)90101-5.  Google Scholar

[4]

A. BlanchetJ. A. Carrillo and Ph. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168.  doi: 10.1007/s00526-008-0200-7.  Google Scholar

[5]

H. Brézis and W. Strauss, Semi-linear second-order elliptic equations in $L^1$, J. Math. Soc. Japan, 25 (1973), 565-590.  doi: 10.2969/jmsj/02540565.  Google Scholar

[6]

J. BurczakT. Cieślak and C. Morales-Rodrigo, Global existence vs. blowup in a fully parabolic quasilinear 1D Keller-Segel system, Nonlinear Anal., 75 (2012), 5215-5228.  doi: 10.1016/j.na.2012.04.038.  Google Scholar

[7]

J. Burczak and R. Granero-Belinchon, Critical Keller-Segel meets Burgers on S1:large-time smooth solutions, Nonlinearity, 29 (2016), 3810-3836.  doi: 10.1088/0951-7715/29/12/3810.  Google Scholar

[8]

T. Cieślak and K. Fujie, No critical nonlinear diffusion in 1D quasilinear fully parabolic chemotaxis system, Proc. Amer. Math. Soc., 146 (2018), 2529-2540.  doi: 10.1090/proc/13939.  Google Scholar

[9]

T. Cieślak and Ph. Laurençot, Finite time blow-up for radially symmetric solutions to a critical quasilinear Smoluchowski-Poisson system, C. R. Math. Acad. Sci. Paris, 347 (2009), 237-242.  doi: 10.1016/j.crma.2009.01.016.  Google Scholar

[10]

T. Cieślak and Ph. Laurençot, Looking for critical nonlinearity in the one-dimensional quasilinear Smoluchowski-Poisson system, Discrete Contin. Dyn. Syst., 26 (2010), 417-430.  doi: 10.3934/dcds.2010.26.417.  Google Scholar

[11]

T. Cieślak and Ph. Laurençot, Global existence vs. blowup for the one dimensional quasilinear Smoluchowski-Poisson system, Progress in Nonlinear Differential Equations and Their Applications, 80 (2011), 95-109.  doi: 10.1007/978-3-0348-0075-4_6.  Google Scholar

[12]

T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076.  doi: 10.1088/0951-7715/21/5/009.  Google Scholar

[13]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.  doi: 10.1090/S0002-9947-1992-1046835-6.  Google Scholar

[14]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[15]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Ser. Int., 40 (1997), 411-433.   Google Scholar

[16]

E. Nasreddine, Global existence of solutions to a parabolic-elliptic Keller-Segel system with critical degenerate diffusion, J. Math. Anal. Appl., 417 (2014), 144-163.  doi: 10.1016/j.jmaa.2014.02.069.  Google Scholar

[17]

Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems, Differential Integral Equations, 19 (2006), 841-876.   Google Scholar

[18]

Y. Sugiyama, Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models, Adv. Differential Equations, 12 (2007), 121-144.   Google Scholar

show all references

References:
[1]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[2]

B. Bieganowski, T. Cieślak, K. Fujie and T. Senba, Boundedness of solutions to the critical fully parabolic quasilinear one-dimensional Keller-Segel system, Math. Nachr., to appear. Google Scholar

[3]

P. BilerW. Hebisch and T. Nadzieja, The Debye system: Existence and large time behavior of solutions, Nonlinear Anal., 23 (1994), 1189-1209.  doi: 10.1016/0362-546X(94)90101-5.  Google Scholar

[4]

A. BlanchetJ. A. Carrillo and Ph. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168.  doi: 10.1007/s00526-008-0200-7.  Google Scholar

[5]

H. Brézis and W. Strauss, Semi-linear second-order elliptic equations in $L^1$, J. Math. Soc. Japan, 25 (1973), 565-590.  doi: 10.2969/jmsj/02540565.  Google Scholar

[6]

J. BurczakT. Cieślak and C. Morales-Rodrigo, Global existence vs. blowup in a fully parabolic quasilinear 1D Keller-Segel system, Nonlinear Anal., 75 (2012), 5215-5228.  doi: 10.1016/j.na.2012.04.038.  Google Scholar

[7]

J. Burczak and R. Granero-Belinchon, Critical Keller-Segel meets Burgers on S1:large-time smooth solutions, Nonlinearity, 29 (2016), 3810-3836.  doi: 10.1088/0951-7715/29/12/3810.  Google Scholar

[8]

T. Cieślak and K. Fujie, No critical nonlinear diffusion in 1D quasilinear fully parabolic chemotaxis system, Proc. Amer. Math. Soc., 146 (2018), 2529-2540.  doi: 10.1090/proc/13939.  Google Scholar

[9]

T. Cieślak and Ph. Laurençot, Finite time blow-up for radially symmetric solutions to a critical quasilinear Smoluchowski-Poisson system, C. R. Math. Acad. Sci. Paris, 347 (2009), 237-242.  doi: 10.1016/j.crma.2009.01.016.  Google Scholar

[10]

T. Cieślak and Ph. Laurençot, Looking for critical nonlinearity in the one-dimensional quasilinear Smoluchowski-Poisson system, Discrete Contin. Dyn. Syst., 26 (2010), 417-430.  doi: 10.3934/dcds.2010.26.417.  Google Scholar

[11]

T. Cieślak and Ph. Laurençot, Global existence vs. blowup for the one dimensional quasilinear Smoluchowski-Poisson system, Progress in Nonlinear Differential Equations and Their Applications, 80 (2011), 95-109.  doi: 10.1007/978-3-0348-0075-4_6.  Google Scholar

[12]

T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076.  doi: 10.1088/0951-7715/21/5/009.  Google Scholar

[13]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.  doi: 10.1090/S0002-9947-1992-1046835-6.  Google Scholar

[14]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[15]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Ser. Int., 40 (1997), 411-433.   Google Scholar

[16]

E. Nasreddine, Global existence of solutions to a parabolic-elliptic Keller-Segel system with critical degenerate diffusion, J. Math. Anal. Appl., 417 (2014), 144-163.  doi: 10.1016/j.jmaa.2014.02.069.  Google Scholar

[17]

Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems, Differential Integral Equations, 19 (2006), 841-876.   Google Scholar

[18]

Y. Sugiyama, Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models, Adv. Differential Equations, 12 (2007), 121-144.   Google Scholar

[1]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[2]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[3]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[4]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[5]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[6]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[7]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[8]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[9]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[10]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[11]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[12]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[13]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (145)
  • HTML views (724)
  • Cited by (0)

Other articles
by authors

[Back to Top]