The paper should be viewed as complement of an earlier result in [
Citation: |
[1] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X.![]() ![]() ![]() |
[2] |
B. Bieganowski, T. Cieślak, K. Fujie and T. Senba, Boundedness of solutions to the critical fully parabolic quasilinear one-dimensional Keller-Segel system, Math. Nachr., to appear.
![]() |
[3] |
P. Biler, W. Hebisch and T. Nadzieja, The Debye system: Existence and large time behavior of solutions, Nonlinear Anal., 23 (1994), 1189-1209.
doi: 10.1016/0362-546X(94)90101-5.![]() ![]() ![]() |
[4] |
A. Blanchet, J. A. Carrillo and Ph. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168.
doi: 10.1007/s00526-008-0200-7.![]() ![]() ![]() |
[5] |
H. Brézis and W. Strauss, Semi-linear second-order elliptic equations in $L^1$, J. Math. Soc. Japan, 25 (1973), 565-590.
doi: 10.2969/jmsj/02540565.![]() ![]() ![]() |
[6] |
J. Burczak, T. Cieślak and C. Morales-Rodrigo, Global existence vs. blowup in a fully parabolic quasilinear 1D Keller-Segel system, Nonlinear Anal., 75 (2012), 5215-5228.
doi: 10.1016/j.na.2012.04.038.![]() ![]() ![]() |
[7] |
J. Burczak and R. Granero-Belinchon, Critical Keller-Segel meets Burgers on S1:large-time smooth solutions, Nonlinearity, 29 (2016), 3810-3836.
doi: 10.1088/0951-7715/29/12/3810.![]() ![]() ![]() |
[8] |
T. Cieślak and K. Fujie, No critical nonlinear diffusion in 1D quasilinear fully parabolic chemotaxis system, Proc. Amer. Math. Soc., 146 (2018), 2529-2540.
doi: 10.1090/proc/13939.![]() ![]() ![]() |
[9] |
T. Cieślak and Ph. Laurençot, Finite time blow-up for radially symmetric solutions to a critical quasilinear Smoluchowski-Poisson system, C. R. Math. Acad. Sci. Paris, 347 (2009), 237-242.
doi: 10.1016/j.crma.2009.01.016.![]() ![]() ![]() |
[10] |
T. Cieślak and Ph. Laurençot, Looking for critical nonlinearity in the one-dimensional quasilinear Smoluchowski-Poisson system, Discrete Contin. Dyn. Syst., 26 (2010), 417-430.
doi: 10.3934/dcds.2010.26.417.![]() ![]() ![]() |
[11] |
T. Cieślak and Ph. Laurençot, Global existence vs. blowup for the one dimensional quasilinear Smoluchowski-Poisson system, Progress in Nonlinear Differential Equations and Their Applications, 80 (2011), 95-109.
doi: 10.1007/978-3-0348-0075-4_6.![]() ![]() ![]() |
[12] |
T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076.
doi: 10.1088/0951-7715/21/5/009.![]() ![]() ![]() |
[13] |
W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.
doi: 10.1090/S0002-9947-1992-1046835-6.![]() ![]() ![]() |
[14] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5.![]() ![]() |
[15] |
T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Ser. Int., 40 (1997), 411-433.
![]() ![]() |
[16] |
E. Nasreddine, Global existence of solutions to a parabolic-elliptic Keller-Segel system with critical degenerate diffusion, J. Math. Anal. Appl., 417 (2014), 144-163.
doi: 10.1016/j.jmaa.2014.02.069.![]() ![]() ![]() |
[17] |
Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems, Differential Integral Equations, 19 (2006), 841-876.
![]() ![]() |
[18] |
Y. Sugiyama, Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models, Adv. Differential Equations, 12 (2007), 121-144.
![]() |