In this paper we study an anti-angiogenic therapy model that deactivates the tumor angiogenic factors. The model consists of four parabolic equations and considers the chemotaxis and a logistic law for the endothelial cells and several boundary conditions, some of them are non homogeneous. We study the parabolic problem, proving the existence of a unique global positive solution for positive initial conditions, and the stationary problem, justifying the existence of one real number, an eigenvalue of a certain problem, which determines if the semi-trivial solutions are stable or unstable and the existence of a coexistence state.
Citation: |
[1] | H. Amann, Nonlinear elliptic equations with nonlinear boundary conditions, In New Developments in differential equations (eds. Eckhaus, W.), Math Studies, 21, North-Holland, Amsterdam, (1976), 43-63. |
[2] | H. Amann, Maximum principles and principal eigenvalues, In Ten Mathematical Essays on Approximation in Analyis and Topology (eds. J. Ferrera, J. López-Gómez and F. R. Ruíz del Portal), Elsevier, (2005), 1-60. doi: 10.1016/B978-044451861-3/50001-X. |
[3] | H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, In Function Spaces, Differential Operators and Nonlinear Analysis (eds. H. J. Schmeisser, H. Triebel), Teubner, Stuttgart, Leipzig, 133 (1993), 9-126. doi: 10.1007/978-3-663-11336-2_1. |
[4] | H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Differential Equations, 146 (1998), 336-374. doi: 10.1006/jdeq.1998.3440. |
[5] | M. A. J. Chaplain, Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumour development, Math. Comput. Modelling, 23 (1996), 47-87. doi: 10.1016/0895-7177(96)00019-2. |
[6] | T. Cieślak and C. Morales-Rodrigo, Long-time behavior of an angiogenesis model with flux at the tumor boundary, Z. Angew. Math. Phys., 64 (2013), 1625-1641. doi: 10.1007/s00033-013-0302-8. |
[7] | M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funt. Anal., 8 (1971), 321-340. doi: 10.1016/0022-1236(71)90015-2. |
[8] | M. Delgado, I. Gayte, C. Morales-Rodrigo and A. Suárez, An angiogenesis model with nonlinear chemotactis response and flux at the tumor bondary, Nonlinear Anal., 72 (2010), 330-347. doi: 10.1016/j.na.2009.06.057. |
[9] | M. Delgado, C. Morales-Rodrigo and A. Suárez, Anti-angiogenic therapy based on the binding to receptors, Discrete and Continuous Dynamical Systems. Series A, 32 (2012), 3871-3894. doi: 10.3934/dcds.2012.32.3871. |
[10] | J. García-Melián, J. D. Rossi and J. Sabina, Existence and uniqueness of positive solutions to elliptic problems with sublinear mixed boundary conditions, Comm. Comtemporary Math., 11 (2009), 585-613. doi: 10.1142/S0219199709003508. |
[11] | B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901. doi: 10.1080/03605308108820196. |
[12] | D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes Math., 840, Springer-Verlag, 1981. doi: 10.1007/BFb0089647. |
[13] | D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022. |
[14] | J. López-Gómez, Nonlinear eigenvalues and global bifurcations: Applications to the search of positive solutions for general Lotka-Volterra reaction-diffusion systems with two species, Differential Integral Equations, 7 (1994), 1427-1452. |
[15] | J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, Chapman & Hall CRC, 2001. doi: 10.1201/9781420035506. |
[16] | J. López-Gómez, Linear Second Order Elliptic Operators, World Scientific Publishing, 2013. doi: 10.1142/9789814440257_0001. |
[17] | N. V. Mantzaris, S. Webb and H. G. Othmer, Mathematical modeling of tumor induced angiogenesis, J. Math. Biol., 49 (2004), 111-187. doi: 10.1007/s00285-003-0262-2. |
[18] | M. Winkler, Aggregation vs. global diffusive behavior in the higher dimensional Keller-Segel Model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008. |