\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global asymptotic stability in a chemotaxis-growth model for tumor invasion

  • * Corresponding author: Kentarou Fujie

    * Corresponding author: Kentarou Fujie
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • This paper presents global existence and asymptotic behavior of solutions to the chemotaxis-growth system

    $ \left\{ \begin{array}{l} u_t = \Delta u - \nabla \cdot (u\nabla v) + ru -\mu u^\alpha, \qquad x\in \Omega, \ t>0, \\ \ v_t = \Delta v + wz, \qquad x\in \Omega, \ t>0, \\ \ w_t = -wz, \qquad x\in \Omega, \ t>0, \\ \ z_t = \Delta z - z + u, \qquad x\in \Omega, \ t>0, \end{array} \right. $

    in a smoothly bounded domain $ \Omega \subset \mathbb{R}^n $, $ n \le 3 $, where $ r>0 $, $ \mu>0 $ and $ \alpha>1 $. Without the logistic source $ ru-\mu u^\alpha $, the stabilization of this system has been shown by Fujie, Ito, Winkler and Yokota (2016), whereas especially about asymptotic behavior, the logistic source disturbs applying this method directly. In the present paper, a way out of this difficulty is introduced and the asymptotic behavior of solutions to the system with logistic source is precisely determined.

    Mathematics Subject Classification: Primary: 35B40, 35Q92; Secondary: 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.
    [2] X. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., 35 (2015), 1891-1904.  doi: 10.3934/dcds.2015.35.1891.
    [3] M. A. J. Chaplain and A. R. A. Anderson, Mathematical modelling of tissue invasion, in Cancer modelling and simulation, Chapman & Hall/CRC Math. Biol. Med. Ser., Chapman & Hall/CRC, Boca Raton, FL, (2003), 269-297.
    [4] E. FeireislP. Laurençot and H. Petzeltová, On convergence to equilibria for the Keller-Segel chemotaxis model, J. Differential Equations, 236 (2007), 551-569.  doi: 10.1016/j.jde.2007.02.002.
    [5] A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138-163.  doi: 10.1016/S0022-247X(02)00147-6.
    [6] K. FujieA. Ito and T. Yokota, Existence and uniqueness of local classical solutions to modified tumor invasion models of Chaplain-Anderson type, Adv. Math. Sci. Appl., 24 (2014), 67-84. 
    [7] K. FujieA. ItoM. Winkler and T. Yokota, Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst., 36 (2016), 151-169.  doi: 10.3934/dcds.2016.36.151.
    [8] K. Fujie and T. Senba, Application of an Adams type inequality to a two-chemical substances chemotaxis system, J. Differential Equations, 263 (2017), 88-148.  doi: 10.1016/j.jde.2017.02.031.
    [9] M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633-683. 
    [10] T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.
    [11] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165. 
    [12] B. Hu and Y. Tao, To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26 (2016), 2111-2128.  doi: 10.1142/S0218202516400091.
    [13] K. KangA. Stevens and J. J. L. Velázquez, Qualitative behavior of a Keller-Segel model with non-diffusive memory, Commun. Partial Differ. Equations, 35 (2010), 245-274.  doi: 10.1080/03605300903473400.
    [14] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.
    [15] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Amer. Math. Soc. Transl., Vol. 23, Providence, RI, 1968.
    [16] J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differential Equations, 258 (2015), 1158-1191.  doi: 10.1016/j.jde.2014.10.016.
    [17] G. Liţcanu and C. Morales-Rodrigo, Asymptotic behaviour of global solutions to a model of cell invasion, Math. Mod. Meth. Appl. Sci., 20 (2010), 1721-1758.  doi: 10.1142/S0218202510004775.
    [18] A. Marciniak-Czochra and M. Ptashnyk, Boundedness of solutions of a haptotaxis model, Math. Models Methods Appl. Sci., 20 (2010), 449-476.  doi: 10.1142/S0218202510004301.
    [19] C. Morales-Rodrigo, Local existence and uniqueness of regular solutions in a model of tissue invasion by solid tumours, Math. Comput. Modelling, 47 (2008), 604-613.  doi: 10.1016/j.mcm.2007.02.031.
    [20] K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., Theory Methods Appl., 51 (2002), 119-144.  doi: 10.1016/S0362-546X(01)00815-X.
    [21] K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcialaj Ekvacioj, 44 (2001), 441-469. 
    [22] Z. SzymańskaC. Morales-RodrigoM. Lachowicz and M. A. J. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions, Math. Models Methods Appl. Sci., 19 (2009), 257-281.  doi: 10.1142/S0218202509003425.
    [23] Y. Tao, Global existence for a haptotaxis model of cancer invasion with tissue remodeling, Nonlinear Anal. Real World Appl., 12 (2011), 418-435.  doi: 10.1016/j.nonrwa.2010.06.027.
    [24] Y. Tao and M. Winkler, Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc.(JEMS), 19 (2017), 3641-3678.  doi: 10.4171/JEMS/749.
    [25] J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.  doi: 10.1080/03605300701319003.
    [26] J. I. Tello and D. Wrzosek, Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162.  doi: 10.1142/S0218202516400108.
    [27] C. Walker and G. F. Webb, Global existence of classical solutions for a haptotaxis model, SIAM J. Math. Anal., 38 (2007), 1694-1713.  doi: 10.1137/060655122.
    [28] M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.
    [29] M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, Journal de Mathématiques Pures et Appliquées, 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.
    [30] M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Equations, 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.
  • 加载中
SHARE

Article Metrics

HTML views(2416) PDF downloads(448) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return