doi: 10.3934/dcdss.2020013

Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system

Institut für Mathematik, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany

Received  August 2017 Revised  October 2017 Published  January 2019

We consider a parabolic-elliptic chemotaxis system generalizing
$ \begin{align} & {{u}_{t}}=\nabla \cdot ({{(u+1)}^{m-1}}\nabla u)-\nabla \cdot (u{{(u+1)}^{\sigma -1}}\nabla v) \\ & \ 0=\Delta v-v+u \\ \end{align} $
in bounded smooth domains
$ \Omega \subset \mathbb{R}^N $
,
$ N\ge 3 $
, and with homogeneous Neumann boundary conditions. We show that
● solutions are global and bounded if
$ \sigma<m-\frac{N-2}{N} $
● solutions are global if
$ \sigma\le 0 $
● close to given radially symmetric functions there are many initial data producing unbounded solutions if
$ \sigma>m-\frac{N-2}{N} $
.
In particular, if
$ \sigma\le 0 $
and
$ \sigma>m-\frac{N-2}{N} $
, there are many initial data evolving into solutions that blow up after infinite time.
Citation: Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020013
References:
[1]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743. Google Scholar

[2]

V. Calvez and J. A. Carrillo, Volume effects in the Keller-Segel model: Energy estimates preventing blow-up, J. Math. Pures Appl.(9), 86 (2006), 155-175. doi: 10.1016/j.matpur.2006.04.002. Google Scholar

[3]

V. CalvezL. Corrias and M. A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension, Comm. Partial Differential Equations, 37 (2012), 561-584. doi: 10.1080/03605302.2012.655824. Google Scholar

[4]

T. Cieślak and K. Fujie, No critical nonlinear diffusion in 1D quasilinear fully parabolic chemotaxis system, Proc. Amer. Math. Soc., 146 (2018), 2529-2540. doi: 10.1090/proc/13939. Google Scholar

[5]

T. Cieślak and C. Morales-Rodrigo, Quasilinear non-uniformly parabolic-elliptic system modelling chemotaxis with volume filling effect. Existence and uniqueness of global-in-time solutions, Topol. Methods Nonlinear Anal., 29 (2007), 361-381. Google Scholar

[6]

T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851. doi: 10.1016/j.jde.2012.01.045. Google Scholar

[7]

T. Cieślak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2, Acta Appl. Math., 129 (2014), 135-146. doi: 10.1007/s10440-013-9832-5. Google Scholar

[8]

T. Cieślak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models, J. Differential Equations, 258 (2015), 2080-2113. doi: 10.1016/j.jde.2014.12.004. Google Scholar

[9]

T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076. doi: 10.1088/0951-7715/21/5/009. Google Scholar

[10]

A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. Google Scholar

[11]

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114. doi: 10.1002/mana.19981950106. Google Scholar

[12]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4), 24 (1997), 633-683. Google Scholar

[13]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177. doi: 10.1017/S0956792501004363. Google Scholar

[14]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022. Google Scholar

[15]

S. IshidaT. Ono and T. Yokota, Possibility of the existence of blow-up solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Math. Methods Appl. Sci., 36 (2013), 745-760. doi: 10.1002/mma.2622. Google Scholar

[16]

S. IshidaK. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010. doi: 10.1016/j.jde.2014.01.028. Google Scholar

[17]

S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differential Equations, 252 (2012), 1421-1440. doi: 10.1016/j.jde.2011.02.012. Google Scholar

[18]

S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569-2596. doi: 10.3934/dcdsb.2013.18.2569. Google Scholar

[19]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824. doi: 10.1090/S0002-9947-1992-1046835-6. Google Scholar

[20]

J. Lankeit, Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion, J. Differential Equations, 262 (2017), 4052-4084. doi: 10.1016/j.jde.2016.12.007. Google Scholar

[21]

X. Li and Z. Xiang, Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source, Discrete Contin. Dyn. Syst., 35 (2015), 3503-3531. doi: 10.3934/dcds.2015.35.3503. Google Scholar

[22]

N. Mizoguchi and M. Winkler, Blow-up in the two-dimensional parabolic Keller-Segel system, Preprint.Google Scholar

[23]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55. doi: 10.1155/S1025583401000042. Google Scholar

[24]

T. Nagai and T. Senba, Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 145-156. Google Scholar

[25]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433. Google Scholar

[26]

T. NagaiT. Senba and K. Yoshida, Global existence of solutions to the parabolic systems of chemotaxis, Sūrikaisekikenkyūsho Kōkyūroku, 1009 (1997), 22-28. Google Scholar

[27]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469. Google Scholar

[28]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: blowup in a finite and the infinite time, Methods Appl. Anal., 8 (2001), 349-367. doi: 10.4310/MAA.2001.v8.n2.a9. Google Scholar

[29]

Y. Sugiyama, Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis, Differential Integral Equations, 20 (2007), 133-180. Google Scholar

[30]

Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations, 227 (2006), 333-364. doi: 10.1016/j.jde.2006.03.003. Google Scholar

[31]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019. Google Scholar

[32]

M. Tian and S. Zheng, Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species, Commun. Pure Appl. Anal., 15 (2016), 243-260. doi: 10.3934/cpaa.2016.15.243. Google Scholar

[33]

L. WangC. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872. doi: 10.1016/j.jde.2013.12.007. Google Scholar

[34]

Y. Wang, A quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type with logistic source, J. Math. Anal. Appl., 441 (2016), 259-292. doi: 10.1016/j.jmaa.2016.03.061. Google Scholar

[35]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[36]

M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33 (2010), 12-24. doi: 10.1002/mma.1146. Google Scholar

[37]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272. doi: 10.1016/j.jmaa.2011.05.057. Google Scholar

[38]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl.(9), 100 (2013), 748-767. doi: 10.1016/j.matpur.2013.01.020. Google Scholar

[39]

M. Winkler, Global classical solvability and generic infinite-time blow-up in quasilinear Keller-Segel systems with bounded sensitivities, Preprint.Google Scholar

[40]

M. Winkler, Global existence and slow grow-up in a quasilinear Keller-Segel system with exponentially decaying diffusivity, Nonlinearity, 30 (2017), 735-764. doi: 10.1088/1361-6544/aa565b. Google Scholar

[41]

M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044-1064. doi: 10.1016/j.na.2009.07.045. Google Scholar

[42]

J. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Differential Equations, 259 (2015), 120-140. doi: 10.1016/j.jde.2015.02.003. Google Scholar

[43]

P. ZhengC. Mu and X. Hu, Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source, Discrete Contin. Dyn. Syst., 35 (2015), 2299-2323. doi: 10.3934/dcds.2015.35.2299. Google Scholar

show all references

References:
[1]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743. Google Scholar

[2]

V. Calvez and J. A. Carrillo, Volume effects in the Keller-Segel model: Energy estimates preventing blow-up, J. Math. Pures Appl.(9), 86 (2006), 155-175. doi: 10.1016/j.matpur.2006.04.002. Google Scholar

[3]

V. CalvezL. Corrias and M. A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension, Comm. Partial Differential Equations, 37 (2012), 561-584. doi: 10.1080/03605302.2012.655824. Google Scholar

[4]

T. Cieślak and K. Fujie, No critical nonlinear diffusion in 1D quasilinear fully parabolic chemotaxis system, Proc. Amer. Math. Soc., 146 (2018), 2529-2540. doi: 10.1090/proc/13939. Google Scholar

[5]

T. Cieślak and C. Morales-Rodrigo, Quasilinear non-uniformly parabolic-elliptic system modelling chemotaxis with volume filling effect. Existence and uniqueness of global-in-time solutions, Topol. Methods Nonlinear Anal., 29 (2007), 361-381. Google Scholar

[6]

T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851. doi: 10.1016/j.jde.2012.01.045. Google Scholar

[7]

T. Cieślak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2, Acta Appl. Math., 129 (2014), 135-146. doi: 10.1007/s10440-013-9832-5. Google Scholar

[8]

T. Cieślak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models, J. Differential Equations, 258 (2015), 2080-2113. doi: 10.1016/j.jde.2014.12.004. Google Scholar

[9]

T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076. doi: 10.1088/0951-7715/21/5/009. Google Scholar

[10]

A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. Google Scholar

[11]

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114. doi: 10.1002/mana.19981950106. Google Scholar

[12]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4), 24 (1997), 633-683. Google Scholar

[13]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177. doi: 10.1017/S0956792501004363. Google Scholar

[14]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022. Google Scholar

[15]

S. IshidaT. Ono and T. Yokota, Possibility of the existence of blow-up solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Math. Methods Appl. Sci., 36 (2013), 745-760. doi: 10.1002/mma.2622. Google Scholar

[16]

S. IshidaK. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010. doi: 10.1016/j.jde.2014.01.028. Google Scholar

[17]

S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differential Equations, 252 (2012), 1421-1440. doi: 10.1016/j.jde.2011.02.012. Google Scholar

[18]

S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569-2596. doi: 10.3934/dcdsb.2013.18.2569. Google Scholar

[19]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824. doi: 10.1090/S0002-9947-1992-1046835-6. Google Scholar

[20]

J. Lankeit, Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion, J. Differential Equations, 262 (2017), 4052-4084. doi: 10.1016/j.jde.2016.12.007. Google Scholar

[21]

X. Li and Z. Xiang, Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source, Discrete Contin. Dyn. Syst., 35 (2015), 3503-3531. doi: 10.3934/dcds.2015.35.3503. Google Scholar

[22]

N. Mizoguchi and M. Winkler, Blow-up in the two-dimensional parabolic Keller-Segel system, Preprint.Google Scholar

[23]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55. doi: 10.1155/S1025583401000042. Google Scholar

[24]

T. Nagai and T. Senba, Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 145-156. Google Scholar

[25]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433. Google Scholar

[26]

T. NagaiT. Senba and K. Yoshida, Global existence of solutions to the parabolic systems of chemotaxis, Sūrikaisekikenkyūsho Kōkyūroku, 1009 (1997), 22-28. Google Scholar

[27]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469. Google Scholar

[28]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: blowup in a finite and the infinite time, Methods Appl. Anal., 8 (2001), 349-367. doi: 10.4310/MAA.2001.v8.n2.a9. Google Scholar

[29]

Y. Sugiyama, Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis, Differential Integral Equations, 20 (2007), 133-180. Google Scholar

[30]

Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations, 227 (2006), 333-364. doi: 10.1016/j.jde.2006.03.003. Google Scholar

[31]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019. Google Scholar

[32]

M. Tian and S. Zheng, Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species, Commun. Pure Appl. Anal., 15 (2016), 243-260. doi: 10.3934/cpaa.2016.15.243. Google Scholar

[33]

L. WangC. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872. doi: 10.1016/j.jde.2013.12.007. Google Scholar

[34]

Y. Wang, A quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type with logistic source, J. Math. Anal. Appl., 441 (2016), 259-292. doi: 10.1016/j.jmaa.2016.03.061. Google Scholar

[35]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[36]

M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33 (2010), 12-24. doi: 10.1002/mma.1146. Google Scholar

[37]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272. doi: 10.1016/j.jmaa.2011.05.057. Google Scholar

[38]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl.(9), 100 (2013), 748-767. doi: 10.1016/j.matpur.2013.01.020. Google Scholar

[39]

M. Winkler, Global classical solvability and generic infinite-time blow-up in quasilinear Keller-Segel systems with bounded sensitivities, Preprint.Google Scholar

[40]

M. Winkler, Global existence and slow grow-up in a quasilinear Keller-Segel system with exponentially decaying diffusivity, Nonlinearity, 30 (2017), 735-764. doi: 10.1088/1361-6544/aa565b. Google Scholar

[41]

M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044-1064. doi: 10.1016/j.na.2009.07.045. Google Scholar

[42]

J. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Differential Equations, 259 (2015), 120-140. doi: 10.1016/j.jde.2015.02.003. Google Scholar

[43]

P. ZhengC. Mu and X. Hu, Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source, Discrete Contin. Dyn. Syst., 35 (2015), 2299-2323. doi: 10.3934/dcds.2015.35.2299. Google Scholar

[1]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[2]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[3]

Monica Marras, Stella Vernier Piro, Giuseppe Viglialoro. Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system. Conference Publications, 2015, 2015 (special) : 809-816. doi: 10.3934/proc.2015.0809

[4]

Jean Dolbeault, Christian Schmeiser. The two-dimensional Keller-Segel model after blow-up. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 109-121. doi: 10.3934/dcds.2009.25.109

[5]

Vincent Calvez, Thomas O. Gallouët. Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1175-1208. doi: 10.3934/dcds.2016.36.1175

[6]

Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4755-4782. doi: 10.3934/dcdsb.2019029

[7]

Chao Deng, Tong Li. Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 183-195. doi: 10.3934/dcdsb.2018093

[8]

Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535

[9]

Sachiko Ishida, Tomomi Yokota. Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 345-354. doi: 10.3934/proc.2013.2013.345

[10]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

[11]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[12]

Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046

[13]

Piotr Biler, Ignacio Guerra, Grzegorz Karch. Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2117-2126. doi: 10.3934/cpaa.2015.14.2117

[14]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[15]

Qi Wang, Jingyue Yang, Lu Zhang. Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3547-3574. doi: 10.3934/dcdsb.2017179

[16]

Qi Wang, Lu Zhang, Jingyue Yang, Jia Hu. Global existence and steady states of a two competing species Keller--Segel chemotaxis model. Kinetic & Related Models, 2015, 8 (4) : 777-807. doi: 10.3934/krm.2015.8.777

[17]

Luca Battaglia. A general existence result for stationary solutions to the Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 905-926. doi: 10.3934/dcds.2019038

[18]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[19]

Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure & Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339

[20]

Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (22)
  • HTML views (487)
  • Cited by (0)

Other articles
by authors

[Back to Top]