February  2020, 13(2): 233-255. doi: 10.3934/dcdss.2020013

Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system

Institut für Mathematik, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany

Received  August 2017 Revised  October 2017 Published  January 2019

We consider a parabolic-elliptic chemotaxis system generalizing
$ \begin{align} & {{u}_{t}}=\nabla \cdot ({{(u+1)}^{m-1}}\nabla u)-\nabla \cdot (u{{(u+1)}^{\sigma -1}}\nabla v) \\ & \ 0=\Delta v-v+u \\ \end{align} $
in bounded smooth domains
$ \Omega \subset \mathbb{R}^N $
,
$ N\ge 3 $
, and with homogeneous Neumann boundary conditions. We show that
● solutions are global and bounded if
$ \sigma<m-\frac{N-2}{N} $
● solutions are global if
$ \sigma\le 0 $
● close to given radially symmetric functions there are many initial data producing unbounded solutions if
$ \sigma>m-\frac{N-2}{N} $
.
In particular, if
$ \sigma\le 0 $
and
$ \sigma>m-\frac{N-2}{N} $
, there are many initial data evolving into solutions that blow up after infinite time.
Citation: Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 233-255. doi: 10.3934/dcdss.2020013
References:
[1]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743.   Google Scholar

[2]

V. Calvez and J. A. Carrillo, Volume effects in the Keller-Segel model: Energy estimates preventing blow-up, J. Math. Pures Appl.(9), 86 (2006), 155-175.  doi: 10.1016/j.matpur.2006.04.002.  Google Scholar

[3]

V. CalvezL. Corrias and M. A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension, Comm. Partial Differential Equations, 37 (2012), 561-584.  doi: 10.1080/03605302.2012.655824.  Google Scholar

[4]

T. Cieślak and K. Fujie, No critical nonlinear diffusion in 1D quasilinear fully parabolic chemotaxis system, Proc. Amer. Math. Soc., 146 (2018), 2529-2540.  doi: 10.1090/proc/13939.  Google Scholar

[5]

T. Cieślak and C. Morales-Rodrigo, Quasilinear non-uniformly parabolic-elliptic system modelling chemotaxis with volume filling effect. Existence and uniqueness of global-in-time solutions, Topol. Methods Nonlinear Anal., 29 (2007), 361-381.   Google Scholar

[6]

T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851.  doi: 10.1016/j.jde.2012.01.045.  Google Scholar

[7]

T. Cieślak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2, Acta Appl. Math., 129 (2014), 135-146.  doi: 10.1007/s10440-013-9832-5.  Google Scholar

[8]

T. Cieślak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models, J. Differential Equations, 258 (2015), 2080-2113.  doi: 10.1016/j.jde.2014.12.004.  Google Scholar

[9]

T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076.  doi: 10.1088/0951-7715/21/5/009.  Google Scholar

[10]

A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969.  Google Scholar

[11]

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.  doi: 10.1002/mana.19981950106.  Google Scholar

[12]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4), 24 (1997), 633-683.   Google Scholar

[13]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.  doi: 10.1017/S0956792501004363.  Google Scholar

[14]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[15]

S. IshidaT. Ono and T. Yokota, Possibility of the existence of blow-up solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Math. Methods Appl. Sci., 36 (2013), 745-760.  doi: 10.1002/mma.2622.  Google Scholar

[16]

S. IshidaK. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.  doi: 10.1016/j.jde.2014.01.028.  Google Scholar

[17]

S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differential Equations, 252 (2012), 1421-1440.  doi: 10.1016/j.jde.2011.02.012.  Google Scholar

[18]

S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569-2596.  doi: 10.3934/dcdsb.2013.18.2569.  Google Scholar

[19]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.  doi: 10.1090/S0002-9947-1992-1046835-6.  Google Scholar

[20]

J. Lankeit, Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion, J. Differential Equations, 262 (2017), 4052-4084.  doi: 10.1016/j.jde.2016.12.007.  Google Scholar

[21]

X. Li and Z. Xiang, Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source, Discrete Contin. Dyn. Syst., 35 (2015), 3503-3531.  doi: 10.3934/dcds.2015.35.3503.  Google Scholar

[22]

N. Mizoguchi and M. Winkler, Blow-up in the two-dimensional parabolic Keller-Segel system, Preprint. Google Scholar

[23]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55.  doi: 10.1155/S1025583401000042.  Google Scholar

[24]

T. Nagai and T. Senba, Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 145-156.   Google Scholar

[25]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.   Google Scholar

[26]

T. NagaiT. Senba and K. Yoshida, Global existence of solutions to the parabolic systems of chemotaxis, Sūrikaisekikenkyūsho Kōkyūroku, 1009 (1997), 22-28.   Google Scholar

[27]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469.   Google Scholar

[28]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: blowup in a finite and the infinite time, Methods Appl. Anal., 8 (2001), 349-367.  doi: 10.4310/MAA.2001.v8.n2.a9.  Google Scholar

[29]

Y. Sugiyama, Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis, Differential Integral Equations, 20 (2007), 133-180.   Google Scholar

[30]

Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations, 227 (2006), 333-364.  doi: 10.1016/j.jde.2006.03.003.  Google Scholar

[31]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[32]

M. Tian and S. Zheng, Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species, Commun. Pure Appl. Anal., 15 (2016), 243-260.  doi: 10.3934/cpaa.2016.15.243.  Google Scholar

[33]

L. WangC. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872.  doi: 10.1016/j.jde.2013.12.007.  Google Scholar

[34]

Y. Wang, A quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type with logistic source, J. Math. Anal. Appl., 441 (2016), 259-292.  doi: 10.1016/j.jmaa.2016.03.061.  Google Scholar

[35]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[36]

M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33 (2010), 12-24.  doi: 10.1002/mma.1146.  Google Scholar

[37]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272.  doi: 10.1016/j.jmaa.2011.05.057.  Google Scholar

[38]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl.(9), 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[39]

M. Winkler, Global classical solvability and generic infinite-time blow-up in quasilinear Keller-Segel systems with bounded sensitivities, Preprint. Google Scholar

[40]

M. Winkler, Global existence and slow grow-up in a quasilinear Keller-Segel system with exponentially decaying diffusivity, Nonlinearity, 30 (2017), 735-764.  doi: 10.1088/1361-6544/aa565b.  Google Scholar

[41]

M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044-1064.  doi: 10.1016/j.na.2009.07.045.  Google Scholar

[42]

J. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Differential Equations, 259 (2015), 120-140.  doi: 10.1016/j.jde.2015.02.003.  Google Scholar

[43]

P. ZhengC. Mu and X. Hu, Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source, Discrete Contin. Dyn. Syst., 35 (2015), 2299-2323.  doi: 10.3934/dcds.2015.35.2299.  Google Scholar

show all references

References:
[1]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743.   Google Scholar

[2]

V. Calvez and J. A. Carrillo, Volume effects in the Keller-Segel model: Energy estimates preventing blow-up, J. Math. Pures Appl.(9), 86 (2006), 155-175.  doi: 10.1016/j.matpur.2006.04.002.  Google Scholar

[3]

V. CalvezL. Corrias and M. A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension, Comm. Partial Differential Equations, 37 (2012), 561-584.  doi: 10.1080/03605302.2012.655824.  Google Scholar

[4]

T. Cieślak and K. Fujie, No critical nonlinear diffusion in 1D quasilinear fully parabolic chemotaxis system, Proc. Amer. Math. Soc., 146 (2018), 2529-2540.  doi: 10.1090/proc/13939.  Google Scholar

[5]

T. Cieślak and C. Morales-Rodrigo, Quasilinear non-uniformly parabolic-elliptic system modelling chemotaxis with volume filling effect. Existence and uniqueness of global-in-time solutions, Topol. Methods Nonlinear Anal., 29 (2007), 361-381.   Google Scholar

[6]

T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851.  doi: 10.1016/j.jde.2012.01.045.  Google Scholar

[7]

T. Cieślak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2, Acta Appl. Math., 129 (2014), 135-146.  doi: 10.1007/s10440-013-9832-5.  Google Scholar

[8]

T. Cieślak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models, J. Differential Equations, 258 (2015), 2080-2113.  doi: 10.1016/j.jde.2014.12.004.  Google Scholar

[9]

T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076.  doi: 10.1088/0951-7715/21/5/009.  Google Scholar

[10]

A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969.  Google Scholar

[11]

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.  doi: 10.1002/mana.19981950106.  Google Scholar

[12]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4), 24 (1997), 633-683.   Google Scholar

[13]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.  doi: 10.1017/S0956792501004363.  Google Scholar

[14]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[15]

S. IshidaT. Ono and T. Yokota, Possibility of the existence of blow-up solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Math. Methods Appl. Sci., 36 (2013), 745-760.  doi: 10.1002/mma.2622.  Google Scholar

[16]

S. IshidaK. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.  doi: 10.1016/j.jde.2014.01.028.  Google Scholar

[17]

S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differential Equations, 252 (2012), 1421-1440.  doi: 10.1016/j.jde.2011.02.012.  Google Scholar

[18]

S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569-2596.  doi: 10.3934/dcdsb.2013.18.2569.  Google Scholar

[19]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.  doi: 10.1090/S0002-9947-1992-1046835-6.  Google Scholar

[20]

J. Lankeit, Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion, J. Differential Equations, 262 (2017), 4052-4084.  doi: 10.1016/j.jde.2016.12.007.  Google Scholar

[21]

X. Li and Z. Xiang, Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source, Discrete Contin. Dyn. Syst., 35 (2015), 3503-3531.  doi: 10.3934/dcds.2015.35.3503.  Google Scholar

[22]

N. Mizoguchi and M. Winkler, Blow-up in the two-dimensional parabolic Keller-Segel system, Preprint. Google Scholar

[23]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55.  doi: 10.1155/S1025583401000042.  Google Scholar

[24]

T. Nagai and T. Senba, Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 145-156.   Google Scholar

[25]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.   Google Scholar

[26]

T. NagaiT. Senba and K. Yoshida, Global existence of solutions to the parabolic systems of chemotaxis, Sūrikaisekikenkyūsho Kōkyūroku, 1009 (1997), 22-28.   Google Scholar

[27]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469.   Google Scholar

[28]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: blowup in a finite and the infinite time, Methods Appl. Anal., 8 (2001), 349-367.  doi: 10.4310/MAA.2001.v8.n2.a9.  Google Scholar

[29]

Y. Sugiyama, Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis, Differential Integral Equations, 20 (2007), 133-180.   Google Scholar

[30]

Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations, 227 (2006), 333-364.  doi: 10.1016/j.jde.2006.03.003.  Google Scholar

[31]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[32]

M. Tian and S. Zheng, Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species, Commun. Pure Appl. Anal., 15 (2016), 243-260.  doi: 10.3934/cpaa.2016.15.243.  Google Scholar

[33]

L. WangC. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872.  doi: 10.1016/j.jde.2013.12.007.  Google Scholar

[34]

Y. Wang, A quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type with logistic source, J. Math. Anal. Appl., 441 (2016), 259-292.  doi: 10.1016/j.jmaa.2016.03.061.  Google Scholar

[35]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[36]

M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33 (2010), 12-24.  doi: 10.1002/mma.1146.  Google Scholar

[37]

M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272.  doi: 10.1016/j.jmaa.2011.05.057.  Google Scholar

[38]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl.(9), 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[39]

M. Winkler, Global classical solvability and generic infinite-time blow-up in quasilinear Keller-Segel systems with bounded sensitivities, Preprint. Google Scholar

[40]

M. Winkler, Global existence and slow grow-up in a quasilinear Keller-Segel system with exponentially decaying diffusivity, Nonlinearity, 30 (2017), 735-764.  doi: 10.1088/1361-6544/aa565b.  Google Scholar

[41]

M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044-1064.  doi: 10.1016/j.na.2009.07.045.  Google Scholar

[42]

J. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Differential Equations, 259 (2015), 120-140.  doi: 10.1016/j.jde.2015.02.003.  Google Scholar

[43]

P. ZhengC. Mu and X. Hu, Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source, Discrete Contin. Dyn. Syst., 35 (2015), 2299-2323.  doi: 10.3934/dcds.2015.35.2299.  Google Scholar

[1]

Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040

[2]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[3]

Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027

[4]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[5]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[6]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[7]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[8]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[9]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[10]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[11]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[12]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[13]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[14]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[15]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[18]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[19]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[20]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (154)
  • HTML views (707)
  • Cited by (3)

Other articles
by authors

[Back to Top]