This paper deals with the two-species chemotaxis-competition system
$\begin{equation*} \begin{cases} u_t = d_1Δ u - \nabla · (u χ_1(w)\nabla w) +μ_1 u(1-u-a_1 v)&{\rm in} \ Ω × (0, ∞), \\ v_t = d_2Δ v - \nabla · (v χ_2(w)\nabla w) +μ_2 v(1-a_2u-v)&{\rm in} \ Ω × (0, ∞), \\ w_t = d_3Δ w + α u + β v - γ w&{\rm in} \ Ω × (0, ∞), \end{cases} \end{equation*}$
where $Ω$ is a bounded domain in $\mathbb{R}^n$ with smooth boundary $\partial Ω$, $n≥ 2$; $χ_i$ are functions satisfying some conditions. About this problem, Bai-Winkler [
Citation: |
[1] |
X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.
doi: 10.1512/iumj.2016.65.5776.![]() ![]() ![]() |
[2] |
T. Black, J. Lankeit and M. Mizukami, On the weakly competitive case in a two-species
chemotaxis model, IMA J. Appl. Math., 81 (2016), 860-876.
doi: 10.1093/imamat/hxw036.![]() ![]() ![]() |
[3] |
K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivit, J. Math. Anal. Appl., 424 (2015), 675-684.
doi: 10.1016/j.jmaa.2014.11.045.![]() ![]() ![]() |
[4] |
K. Lin, C. Mu and L. Wang, Boundedness in a two-species chemotaxis system, Math. Methods Appl. Sci., 38 (2015), 5085-5096.
doi: 10.1002/mma.3429.![]() ![]() ![]() |
[5] |
M. Mizukami, Remarks on smallness of chemotactic effect for asymptotic stability in a twospecies chemotaxis system, AIMS Mathematics, 1 (2016), 156-164.
doi: 10.3934/Math.2016.3.156.![]() ![]() |
[6] |
M. Mizukami, Boundedness and asymptotic stability in a two-species chemotaxis-competition
model with signal-dependent sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2301-2319.
doi: 10.3934/dcdsb.2017097.![]() ![]() ![]() |
[7] |
M. Mizukami, Boundedness and stabilization in a two-species chemotaxis-competition system
of parabolic-parabolic-elliptic type, Math. Methods Appl. Sci., 41 (2018), 234-249.
doi: 10.1002/mma.4607.![]() ![]() ![]() |
[8] |
M. Mizukami and T. Yokota, Global existence and asymptotic stability of solutions to a twospecies chemotaxis system with any chemical diffusion, J. Differential Equations, 261 (2016), 2650-2669.
doi: 10.1016/j.jde.2016.05.008.![]() ![]() ![]() |
[9] |
M. Negreanu and J. I. Tello, On a two species chemotaxis model with slow chemical diffusion, SIAM J. Math. Anal., 46 (2014), 3761-3781.
doi: 10.1137/140971853.![]() ![]() ![]() |
[10] |
M. Negreanu and J. I. Tello, Asymptotic stability of a two species chemotaxis system with
non-diffusive chemoattractant, J. Differential Equations, 258 (2015), 1592-1617.
doi: 10.1016/j.jde.2014.11.009.![]() ![]() ![]() |
[11] |
C. Stinner, J. I. Tello and M. Winkler, Competitive exclusion in a two-species chemotaxis
model, J. Math. Biol., 68 (2014), 1607-1626.
doi: 10.1007/s00285-013-0681-7.![]() ![]() ![]() |
[12] |
J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic
source, Nonlinearity, 25 (2012), 1413-1425.
doi: 10.1088/0951-7715/25/5/1413.![]() ![]() ![]() |
[13] |
Q. Zhang and Y. Li, Global boundedness of solutions to a two-species chemotaxis system, Z. Angew. Math. Phys., 66 (2015), 83-93.
doi: 10.1007/s00033-013-0383-4.![]() ![]() ![]() |