\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Improvement of conditions for asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity

Abstract / Introduction Full Text(HTML) Figure(2) Related Papers Cited by
  • This paper deals with the two-species chemotaxis-competition system

    $\begin{equation*} \begin{cases} u_t = d_1Δ u - \nabla · (u χ_1(w)\nabla w) +μ_1 u(1-u-a_1 v)&{\rm in} \ Ω × (0, ∞), \\ v_t = d_2Δ v - \nabla · (v χ_2(w)\nabla w) +μ_2 v(1-a_2u-v)&{\rm in} \ Ω × (0, ∞), \\ w_t = d_3Δ w + α u + β v - γ w&{\rm in} \ Ω × (0, ∞), \end{cases} \end{equation*}$

    where $Ω$ is a bounded domain in $\mathbb{R}^n$ with smooth boundary $\partial Ω$, $n≥ 2$; $χ_i$ are functions satisfying some conditions. About this problem, Bai-Winkler [1] first obtained asymptotic stability in (1) under some conditions in the case that $a_1, a_2∈ (0, 1)$. Recently, the conditions assumed in [1] were improved ([6]); however, there is a gap between the conditions assumed in [1] and [6]. The purpose of this work is to improve the conditions assumed in the previous works for asymptotic behavior in the case that $a_1, a_2∈ (0, 1)$.

    Mathematics Subject Classification: Primary: 35K51; Secondary: 92C17, 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.   

    Figure 2.   

  • [1] X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.  doi: 10.1512/iumj.2016.65.5776.
    [2] T. BlackJ. Lankeit and M. Mizukami, On the weakly competitive case in a two-species chemotaxis model, IMA J. Appl. Math., 81 (2016), 860-876.  doi: 10.1093/imamat/hxw036.
    [3] K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivit, J. Math. Anal. Appl., 424 (2015), 675-684.  doi: 10.1016/j.jmaa.2014.11.045.
    [4] K. LinC. Mu and L. Wang, Boundedness in a two-species chemotaxis system, Math. Methods Appl. Sci., 38 (2015), 5085-5096.  doi: 10.1002/mma.3429.
    [5] M. Mizukami, Remarks on smallness of chemotactic effect for asymptotic stability in a twospecies chemotaxis system, AIMS Mathematics, 1 (2016), 156-164.  doi: 10.3934/Math.2016.3.156.
    [6] M. Mizukami, Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2301-2319.  doi: 10.3934/dcdsb.2017097.
    [7] M. Mizukami, Boundedness and stabilization in a two-species chemotaxis-competition system of parabolic-parabolic-elliptic type, Math. Methods Appl. Sci., 41 (2018), 234-249.  doi: 10.1002/mma.4607.
    [8] M. Mizukami and T. Yokota, Global existence and asymptotic stability of solutions to a twospecies chemotaxis system with any chemical diffusion, J. Differential Equations, 261 (2016), 2650-2669.  doi: 10.1016/j.jde.2016.05.008.
    [9] M. Negreanu and J. I. Tello, On a two species chemotaxis model with slow chemical diffusion, SIAM J. Math. Anal., 46 (2014), 3761-3781.  doi: 10.1137/140971853.
    [10] M. Negreanu and J. I. Tello, Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant, J. Differential Equations, 258 (2015), 1592-1617.  doi: 10.1016/j.jde.2014.11.009.
    [11] C. StinnerJ. I. Tello and M. Winkler, Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., 68 (2014), 1607-1626.  doi: 10.1007/s00285-013-0681-7.
    [12] J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413-1425.  doi: 10.1088/0951-7715/25/5/1413.
    [13] Q. Zhang and Y. Li, Global boundedness of solutions to a two-species chemotaxis system, Z. Angew. Math. Phys., 66 (2015), 83-93.  doi: 10.1007/s00033-013-0383-4.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(2224) PDF downloads(339) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return