In this article we consider a coupled system of differential equations to describe the evolution of a biological species. The system consists of two equations, a second order parabolic PDE of nonlinear type coupled to an ODE. The system contains chemotactic terms with constant chemotaxis coefficient describing the evolution of a biological species "$u$" which moves towards a higher concentration of a chemical species "$v$" in a bounded domain of $ \mathbb{R}^n$. The chemical "$v$" is assumed to be a non-diffusive substance or with neglectable diffusion properties, satisfying the equation
$v_t = h(u, v).$
We obtain results concerning the bifurcation of constant steady states under the assumption
$ h_v+χ u h_u>0 $
with growth terms $g$. The Parabolic-ODE problem is also considered for the case $h_v+χ u h_u = 0$ without growth terms, i.e. $g \equiv 0$. Global existence of solutions is obtained for a range of initial data.
Citation: |
[1] | A. R. A. Anderson and M. A. I. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Biology, 60 (1998), 857-899. doi: 10.1006/bulm.1998.0042. |
[2] | T. Black, Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals, Discrete& Continuous Dynamical Systems-Series B, 22 (2017), 1253-1272. doi: 10.3934/dcdsb.2017061. |
[3] | T. Black, J. Lankeit and M. Mizukami, On the weakly competitive case in a two-species chemotaxis model, IMA J Appl Math., 81 (2016), 860-876. doi: 10.1093/imamat/hxw036. |
[4] | T. Bollenbach, K. Kruse, P. Pantazis, M. González-Gaitán and F. Jülicher, Morphogen transport in Epithelia, Physical Review E Stat Nonlin Soft Matter Phys, 75 (2007), 011901. doi: 10.1103/PhysRevE.75.011901. |
[5] | N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Mathematical Models and Methods in Applied Sciences, 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X. |
[6] | C. Conca and E. Espejo, Threshold condition for global existence and blow-up to a radially symmetric drift-diffusion system, Appl. Math. Lett., 25 (2012), 352-356. doi: 10.1016/j.aml.2011.09.013. |
[7] | L. Edelstein-Keshet, Mathematical Models in Biology, Society for Industrial and Applied Mathematics, Philadelphia 2005. doi: 10.1137/1.9780898719147. |
[8] | A. Fasano, A. Mancini and M. Primicerio, Equilibrium of two populations subject to chemotaxis, Math. Models Methods Appl. Sci., 14 (2004), 503-533. doi: 10.1142/S0218202504003337. |
[9] | M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM Math. Anal., 33 (2002), 1330-1355. doi: 10.1137/S0036141001385046. |
[10] | A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138-163. doi: 10.1016/S0022-247X(02)00147-6. |
[11] | M. Hirata, S. Kurima, M. Mizukami and T. Yokota, Boundedness and stabilization in a twodimensional two-species chemotaxis-Navier- Stokes system with competitive kinetics, Journal of Differential Equations, 263 (2017), 470-490. doi: 10.1016/j.jde.2017.02.045. |
[12] | D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, Jahresber. Dtsch. Math. Ver., 105 (2003), 103-165. |
[13] | D. Horstmann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., 21 (2011), 231-270. doi: 10.1007/s00332-010-9082-x. |
[14] | E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5. |
[15] | E. F. Keller and L. A. Segel, A model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234. doi: 10.1016/0022-5193(71)90050-6. |
[16] | H. Kielhöfer, Bifurcation Theory, Springer, 2004. doi: 10.1007/b97365. |
[17] | P. Krzyżanowski, P. Laurençot and D. Wrzosek, Mathematical models of receptor-mediated transport of morphogens, M3AS, 20 (2010), 2021-2052. doi: 10.1142/S0218202510004866. |
[18] | A. Kubo, H. Hoshino and K. Kimura, Global existence and asymptotic behaviour of solutions for nonlinear evolution equations related to a tumour invasion, Proceedings of 10th AIMS Conference, (2015), 733-744. doi: 10.3934/proc.2015.0733. |
[19] | A. Kubo and T. Suzuki, Mathematical models of tumour angiogenesis, Journal of Computational and Applied Mathematics, 204 (2007), 48-55. doi: 10.1016/j.cam.2006.04.027. |
[20] | A. Kubo and J. I. Tello, Mathematical analysis of a model of chemotaxis with competition terms, Differential and Integral Equations, 29 (2016), 441-454. |
[21] | D. A. Lauffenburger, Quantitative studies of bacterial chemotaxis and microbial population dynamics, Microb. Ecol., 22 (1991), 175-185. doi: 10.1007/BF02540222. |
[22] | H. A. Levine and B. D. Sleeman, A system of reaction diffusion equation arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683-730. doi: 10.1137/S0036139995291106. |
[23] | H. A. Levine and J. Renclawowicz, Singularity formation in chemotaxis - a conjecture of nagai, SIAM J. Appl. Math., 65 (2004), 336-360. doi: 10.1137/S0036139903431725. |
[24] | H. A. Levine, B. P. Sleeman and N. Nilsen-Hamilton, A mathematical modeling for the roles of pericytes and macrophages in the initiation of angiogenesis I. The role of protease inhibitors in preventing angiogenesis, Mathematical Biosciences, 168 (2000), 75-115. doi: 10.1016/S0025-5564(00)00034-1. |
[25] | Y. Li, K. Lin and C. Mu, Boundedness and asymptotic behavior of solutions to a chemotaxishaptotaxis model in high dimensions, Applied Mathematics Letters, 50 (2015), 91-97. doi: 10.1016/j.aml.2015.06.010. |
[26] | M. Malogrosz, Well-posedness and asymptotic behavior of a multidimensonal model of morphogen transport, J. Evol. Eq., 12 (2012), 353-366. doi: 10.1007/s00028-012-0135-5. |
[27] | M. Małogrosz, A model of morphogen transport in the presence of glypicans II, Journal of Mathematical Analysis and Applications, 433 (2016), 642-680. doi: 10.1016/j.jmaa.2015.07.053. |
[28] | J. H. Merking, D. J. Needham and B. D. Sleeman, A mathematical model for the spread of morphogens with density dependent chemosensitivity, Nonlinearity, 18 (2005), 2745-2773. doi: 10.1088/0951-7715/18/6/018. |
[29] | J. H. Merking and B. D. Sleeman, On the spread of morphogens, J. Math. Biol., 51 (2005), 1-17. doi: 10.1007/s00285-004-0308-0. |
[30] | M. Mizukami and T. Yokota, Global existence and asymptotic stability of solutions to a twospecies chemotaxis system with any chemical diffusion, J. Differential Equations, 261 (2016), 2650-2669. doi: 10.1016/j.jde.2016.05.008. |
[31] | A.I. Muñoz and J. I. Tello, Mathematical analysis and numerical simulation of a model of morphogenesis, Mathematical Biosciences and Engineering, 8 (2011), 1035-1059. doi: 10.3934/mbe.2011.8.1035. |
[32] | M. Negreanu and J. I. Tello, On a two species chemotaxis model with slow chemical diffusion, SIAM J. Math. Anal., 46 (2014), 3761-3781. doi: 10.1137/140971853. |
[33] | M. Negreanu and J. I. Tello, On a comparison method to reaction-diffusion systems and its applications to chemotaxis, Discrete and Continuous Dynamical Systems-Series B, 18 (2013), 2669-2688. doi: 10.3934/dcdsb.2013.18.2669. |
[34] | M. Negreanu and J. I. Tello, On a two species chemotaxis model with slow chemical diffusion, SIAM J. Math. Anal., 46 (2014), 3761-3781. doi: 10.1137/140971853. |
[35] | M. Negreanu and J. I. Tello, Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant, J. Differential Equations, 258 (2015), 1592-1617. doi: 10.1016/j.jde.2014.11.009. |
[36] | C. S. Patlak, Random walk with persistence and external bias, The Bulletin of Mathematical Biophysics, 15 (1953), 311-338. doi: 10.1007/BF02476407. |
[37] | H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABC$^{\prime}$s of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081. |
[38] | B. D. Sleeman and H. A. Levine, Partial differential equations of chemotaxis and angiogenesis, Math. Methods Appl. Sci., 24 (2001), 405-426. doi: 10.1002/mma.212. |
[39] | B. D. Sleeman and H. A. Levine, Partial differential equations of chemotaxis and angiogenesis, SIAM J. Appl. Math., 65 (2005), 790-817. doi: 10.1137/S0036139902415117. |
[40] | A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochactic many-particle systems, SIAM J. Appl. Math., 61 (2000), 183-212. doi: 10.1137/S0036139998342065. |
[41] | C. Stinner, J. I. Tello and M. Winkler, Mathematical analysis of a model of chemotaxis arising from morphogenesis, Math. Methods Appl. Sci., 35 (2012), 445-465. doi: 10.1002/mma.1573. |
[42] | C. Stinner, J. I. Tello and M. Winkler, Competitive exclusion in a two-species chemotaxis model, Journal of Mathematical Biology, 68 (2014), 1607-1626. doi: 10.1007/s00285-013-0681-7. |
[43] | T. Suzuki, Mathematical models of tumor growth systems, Mathematica Bohemica, 137 (2012), 201-218. |
[44] | T. Suzuki and R. Takahashi, Global in time solution to a class of tumour growth systems, Adv. Math. Sci. Appl., 19 (2009), 503-524. |
[45] | J. I. Tello, Mathematical analysis of a model of Morphogenesis, Discrete and Continuous Dynamical Systems - Serie A., 25 (2009), 343-361. doi: 10.3934/dcds.2009.25.343. |
[46] | J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413-1425. doi: 10.1088/0951-7715/25/5/1413. |
[47] | A. M. Turing, The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London, Series B, 237 (1952), 37-72. doi: 10.1098/rstb.1952.0012. |
[48] | X. Wang and Y. Wu, Qualitative analysis on a chemotactic diffusion model for two species competing for a limited resource, Quart. Appl. Math., 60 (2002), 505-531. doi: 10.1090/qam/1914439. |