• Previous Article
    Global solvability in a two-dimensional self-consistent chemotaxis-Navier-Stokes system
  • DCDS-S Home
  • This Issue
  • Next Article
    Existence of traveling wave solutions to parabolic-elliptic-elliptic chemotaxis systems with logistic source
February  2020, 13(2): 321-328. doi: 10.3934/dcdss.2020018

On a parabolic-elliptic chemotaxis-growth system with nonlinear diffusion

1. 

School of Sciences, Southwest Petroleum University, Chengdu 610500, China

2. 

College of Electrical & Information Engineering, Shaanxi University of Science & Technology, Xian 710021, China

* Corresponding author: Yilong Wang

Received  April 2017 Revised  November 2017 Published  January 2019

Fund Project: The first author is supported by Young scholars development fund of SWPU grant 200631010065, Science and Technology Innovation Team of Education Department of Sichuan for Dynamical System and its Applications grant 18TD0013, Youth Science and Technology Innovation Team of Southwest Petroleum University for Nonlinear Systems grant 2017CXTD02 and the NNSF of China grant 11701461. The second author is supported by 2016 Google Nurturing Project for Young Researchers in West China.

This paper considers the following parabolic-elliptic chemotaxis-growth system with nonlinear diffusion
$\left\{ \begin{array}{l}{u_t} = \nabla (D(u)\nabla u) - \nabla (\chi {u^q}\nabla v) + \mu u(1 - {u^\alpha }),\;\;\;\;\;\;\;\;& x \in \Omega ,{\mkern 1mu} {\mkern 1mu} t > 0,\\0 = \Delta v - v + {u^\gamma },\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;&x \in \Omega ,{\mkern 1mu} {\mkern 1mu} t > 0\end{array} \right.$
under homogeneous Neumann boundary conditions for some constants
$q≥ 1$
,
$α>0$
and
$γ≥ 1$
, where
$D(u)≥ c_D u^{m-1}$
$(m≥ 1)$
for all
$u>0$
and
$D(u)>0$
for all
$u≥ 0$
, and
$Ω\subset\mathbb{R}^N$
$(N≥ 1)$
is a bounded domain with smooth boundary. It is shown that when
$ m>q+γ-\frac{2}{N}, \, \, \mathbf{or}$
$ α>q+γ-1, \, \, \mathbf{or}$
$α = q+γ-1\, \, {\rm{and}}\, \, μ>μ^*$
, where
$ {\mu ^*} = \left\{ \begin{array}{l}\begin{array}{*{20}{l}}{\frac{{(\alpha + 1 - m)N - 2}}{{(\alpha + 1 - m)N + 2(\alpha - \gamma )}}\chi ,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if}}~~{\mkern 1mu} {\mkern 1mu} m \le q + \gamma - \frac{2}{N},}\end{array}\\0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if}}~~{\mkern 1mu} {\mkern 1mu} m > q + \gamma - \frac{2}{N},\end{array} \right.$
then the above system possesses a global bounded classical solution for any sufficiently smooth initial data. The results improve the results by Wang et al. (J. Differential Equations 256 (2014)) and generalize the results of Zheng (J. Differential Equations 259 (2015)) and Galakhov et al. (J. Differential Equations 261 (2016)).
Citation: Yilong Wang, Xuande Zhang. On a parabolic-elliptic chemotaxis-growth system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 321-328. doi: 10.3934/dcdss.2020018
References:
[1]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of KellerSegel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[2]

E. GalakhovO. Salieva and J. I. Tello, On a Parabolic-Elliptic system with chemotaxis and logistic type growth, J. Differential Equations, 261 (2016), 4631-4647.  doi: 10.1016/j.jde.2016.07.008.  Google Scholar

[3]

J. Gao, P. Zhu and A. Alsaedi, et al., A new switching control for finite-time synchronization of memristor-based recurrent neural networks, Neural Networks, 86 (2017), 1–9. doi: 10.1016/j.neunet.2016.10.008.  Google Scholar

[4]

T. Hillen and K. Painter, A users guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[5]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅰ, Jahresber. Deutsch. Math.-Verien, 105 (2003), 103-165.   Google Scholar

[6]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅱ, Jahresber. Deutsch. Math.-Verien, 106 (2004), 51-69.   Google Scholar

[7]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[8]

B. Hu and Y. Tao, Boundedness in a parabolic-elliptic chemotaxis-growth system under a critical parameter condition, Appl. Math. Lett., 64 (2017), 1-7.  doi: 10.1016/j.aml.2016.08.003.  Google Scholar

[9]

S. IshidaK. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolicparabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.  doi: 10.1016/j.jde.2014.01.028.  Google Scholar

[10]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[11]

X. Li and Z. Xiang, On an attraction-repulsion chemotaxis system with a logistic source, IMA J. Appl. Math., 81 (2016), 165-198.  doi: 10.1093/imamat/hxv033.  Google Scholar

[12]

X. Li and Z. Xiang, Boundedness in quasilinear Keller–Segel equations with nonlinear sensitivity and logistic source, Discrete Continuous Dynam. Systems - A, 35 (2015), 3503-3531.  doi: 10.3934/dcds.2015.35.3503.  Google Scholar

[13]

E. Nakaguchi and K. Osaki, Global solutions and exponential attractors of a parabolic- parabolic system for chemotaxis with subquadratic degradation, Discrete Continuous Dynam. Systems - B, 18 (2013), 2627-2646.  doi: 10.3934/dcdsb.2013.18.2627.  Google Scholar

[14]

K. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Canad. Appl. Math. Quart., 10 (2002), 501-543.   Google Scholar

[15]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[16]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.  doi: 10.1080/03605300701319003.  Google Scholar

[17]

L. C. WangY. H. Li and C. L. Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Continuous Dynam. Systems - A, 34 (2014), 789-802.  doi: 10.3934/dcds.2014.34.789.  Google Scholar

[18]

L. C. WangC. L. Mu and P. Zheng, On a quasilinear parabolic–elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872.  doi: 10.1016/j.jde.2013.12.007.  Google Scholar

[19]

Y. Wang, A quasilinear attraction–repulsion chemotaxis system of parabolic–elliptic type with logistic source, J. Math. Anal. Appl., 441 (2016), 259-292.  doi: 10.1016/j.jmaa.2016.03.061.  Google Scholar

[20]

Y. Wang, Global existence and boundedness in a quasilinear attraction–repulsion chemotaxis system of parabolic-elliptic type, Bound. Value Probl., 2016 (2016), 1-22.  doi: 10.1186/s13661-016-0518-6.  Google Scholar

[21]

Y. Wang and Z. Xiang, Boundedness in a quasilinear 2D parabolic-parabolic attractionrepulsion chemotaxis system, Discrete Continuous Dynam. Systems - B, 21 (2016), 1953-1973.  doi: 10.3934/dcdsb.2016031.  Google Scholar

[22]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.  Google Scholar

[23]

M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal.-Theor.Methods Appl., 72 (2010), 1044-1064.  doi: 10.1016/j.na.2009.07.045.  Google Scholar

[24]

X. Wu, X. Ding, T. Lu and J. Wang, Topological dynamics of Zadeh's extension on upper semi-continuous fuzzy sets, Int. J. Bifurcation and Chaos, 27 (2017), 1750165, 13pp. doi: 10.1142/S0218127417501656.  Google Scholar

[25]

X. Wu, X. Ma, Z. Zhu and T. Lu, Topological ergodic shadowing and chaos on uniform spaces, Int. J. Bifurcation and Chaos, 28 (2018), 1850043, 9pp. doi: 10.1142/S0218127418500438.  Google Scholar

[26]

C. YangX. CaoZ. Jiang and S. Zheng, Boundedness in a quasilinear fully parabolic KellerSegel system of higher dimension with logistic source, J. Math. Anal. Appl., 430 (2015), 585-591.  doi: 10.1016/j.jmaa.2015.04.093.  Google Scholar

[27]

J. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Differential Equations, 259 (2015), 120-140.  doi: 10.1016/j.jde.2015.02.003.  Google Scholar

show all references

References:
[1]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of KellerSegel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[2]

E. GalakhovO. Salieva and J. I. Tello, On a Parabolic-Elliptic system with chemotaxis and logistic type growth, J. Differential Equations, 261 (2016), 4631-4647.  doi: 10.1016/j.jde.2016.07.008.  Google Scholar

[3]

J. Gao, P. Zhu and A. Alsaedi, et al., A new switching control for finite-time synchronization of memristor-based recurrent neural networks, Neural Networks, 86 (2017), 1–9. doi: 10.1016/j.neunet.2016.10.008.  Google Scholar

[4]

T. Hillen and K. Painter, A users guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[5]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅰ, Jahresber. Deutsch. Math.-Verien, 105 (2003), 103-165.   Google Scholar

[6]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅱ, Jahresber. Deutsch. Math.-Verien, 106 (2004), 51-69.   Google Scholar

[7]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[8]

B. Hu and Y. Tao, Boundedness in a parabolic-elliptic chemotaxis-growth system under a critical parameter condition, Appl. Math. Lett., 64 (2017), 1-7.  doi: 10.1016/j.aml.2016.08.003.  Google Scholar

[9]

S. IshidaK. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolicparabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.  doi: 10.1016/j.jde.2014.01.028.  Google Scholar

[10]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[11]

X. Li and Z. Xiang, On an attraction-repulsion chemotaxis system with a logistic source, IMA J. Appl. Math., 81 (2016), 165-198.  doi: 10.1093/imamat/hxv033.  Google Scholar

[12]

X. Li and Z. Xiang, Boundedness in quasilinear Keller–Segel equations with nonlinear sensitivity and logistic source, Discrete Continuous Dynam. Systems - A, 35 (2015), 3503-3531.  doi: 10.3934/dcds.2015.35.3503.  Google Scholar

[13]

E. Nakaguchi and K. Osaki, Global solutions and exponential attractors of a parabolic- parabolic system for chemotaxis with subquadratic degradation, Discrete Continuous Dynam. Systems - B, 18 (2013), 2627-2646.  doi: 10.3934/dcdsb.2013.18.2627.  Google Scholar

[14]

K. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Canad. Appl. Math. Quart., 10 (2002), 501-543.   Google Scholar

[15]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[16]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.  doi: 10.1080/03605300701319003.  Google Scholar

[17]

L. C. WangY. H. Li and C. L. Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Continuous Dynam. Systems - A, 34 (2014), 789-802.  doi: 10.3934/dcds.2014.34.789.  Google Scholar

[18]

L. C. WangC. L. Mu and P. Zheng, On a quasilinear parabolic–elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872.  doi: 10.1016/j.jde.2013.12.007.  Google Scholar

[19]

Y. Wang, A quasilinear attraction–repulsion chemotaxis system of parabolic–elliptic type with logistic source, J. Math. Anal. Appl., 441 (2016), 259-292.  doi: 10.1016/j.jmaa.2016.03.061.  Google Scholar

[20]

Y. Wang, Global existence and boundedness in a quasilinear attraction–repulsion chemotaxis system of parabolic-elliptic type, Bound. Value Probl., 2016 (2016), 1-22.  doi: 10.1186/s13661-016-0518-6.  Google Scholar

[21]

Y. Wang and Z. Xiang, Boundedness in a quasilinear 2D parabolic-parabolic attractionrepulsion chemotaxis system, Discrete Continuous Dynam. Systems - B, 21 (2016), 1953-1973.  doi: 10.3934/dcdsb.2016031.  Google Scholar

[22]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.  Google Scholar

[23]

M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal.-Theor.Methods Appl., 72 (2010), 1044-1064.  doi: 10.1016/j.na.2009.07.045.  Google Scholar

[24]

X. Wu, X. Ding, T. Lu and J. Wang, Topological dynamics of Zadeh's extension on upper semi-continuous fuzzy sets, Int. J. Bifurcation and Chaos, 27 (2017), 1750165, 13pp. doi: 10.1142/S0218127417501656.  Google Scholar

[25]

X. Wu, X. Ma, Z. Zhu and T. Lu, Topological ergodic shadowing and chaos on uniform spaces, Int. J. Bifurcation and Chaos, 28 (2018), 1850043, 9pp. doi: 10.1142/S0218127418500438.  Google Scholar

[26]

C. YangX. CaoZ. Jiang and S. Zheng, Boundedness in a quasilinear fully parabolic KellerSegel system of higher dimension with logistic source, J. Math. Anal. Appl., 430 (2015), 585-591.  doi: 10.1016/j.jmaa.2015.04.093.  Google Scholar

[27]

J. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Differential Equations, 259 (2015), 120-140.  doi: 10.1016/j.jde.2015.02.003.  Google Scholar

[1]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[2]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[3]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[4]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[5]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[6]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[7]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[8]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[9]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[10]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[11]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[12]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[13]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[14]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[15]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[16]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[17]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[18]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[19]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[20]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (230)
  • HTML views (776)
  • Cited by (0)

Other articles
by authors

[Back to Top]