March  2020, 13(3): 351-375. doi: 10.3934/dcdss.2020020

Fractional operators with boundary points dependent kernels and integration by parts

1. 

Department of Mathematics and General Sciences, Prince Sultan University, P. O. Box 66833, 11586 Riyadh, Saudi Arabia

2. 

Department of Medical Research, China Medical University, Taichung 40402, Taiwan

3. 

Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan

Received  April 2018 Revised  May 2018 Published  March 2019

Recently, U. N. Katugampola presented some generalized fractional integrals and derivatives by iterating a $ t^{\rho-1}- $weighted integral, $ \rho>0 $. The case $ \rho = 1 $ produces Riemann and Caputo fractional derivatives and the limiting case $ \rho\rightarrow 0^+ $ results in Hadamard type fractional operators. In this article, we discuss the differences between a new class of nonlocal generalized fractional derivatives generated by iterating left and right type conformable integrals weighted by $ (t-a)^{\rho-1} $ and $ (b-t)^{\rho-1} $ and the ones introduced by Katugampola. In fact, we will present very different integration by parts formulas by presenting new mixed left and right generalized fractional operators with boundary points dependent kernels. The properties of this new class of mixed fractional operators are analyzed in newly defined function spaces as well.

Citation: Thabet Abdeljawad. Fractional operators with boundary points dependent kernels and integration by parts. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 351-375. doi: 10.3934/dcdss.2020020
References:
[1]

T. Abdeljawad and D. Baleanu, Integration by parts and its application of a new nonlocal fractional derivative with Mittag-Leffler kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098-1107.  doi: 10.22436/jnsa.010.03.20.  Google Scholar

[2]

T. Abdeljawad and D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Journal of Reports in Mathematical Physics, 80 (2017), 11-27.  doi: 10.1016/S0034-4877(17)30059-9.  Google Scholar

[3]

T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, Journal of Inequalities and Applications, 2017 (2017), Paper No. 130, 11 pp. doi: 10.1186/s13660-017-1400-5.  Google Scholar

[4]

T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Advances in Difference Equations, 2017 (2017), Paper No. 313, 11 pp. doi: 10.1186/s13662-017-1285-0.  Google Scholar

[5]

T. Abdeljawad and Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall's inequality, Journal of Computational and Applied Mathematics, 339 (2018), 218-230.  doi: 10.1016/j.cam.2017.10.021.  Google Scholar

[6]

T. Abdeljawad and D. Baleanu, Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels, Advances in Difference Equations, 2016 (2016), Paper No. 232, 18 pp. doi: 10.1186/s13662-016-0949-5.  Google Scholar

[7]

T. Abdeljawad and D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Advances in Difference Equations, 2017 (2017), Paper No. 78, 9 pp. doi: 10.1186/s13662-017-1126-1.  Google Scholar

[8]

T. Abdeljawad and D. Baleanu, Monotonicity results for a nabla fractional difference operator with discrete Mittag-Leffler kernels, Chaos, Solitons and Fractals, 102 (2017), 106-110.  doi: 10.1016/j.chaos.2017.04.006.  Google Scholar

[9]

T. Abdeljawad, Q. M. Al-Mdallal and M. A. Hajji, Arbitrary order fractional difference operators with discrete exponential kernels and applications, Discrete Dynamics in Nature and Society, 2017 (2017), Article ID 4149320, 8 pages. doi: 10.1155/2017/4149320.  Google Scholar

[10]

T. Abdeljawad, On conformable fractional calculus, Journal of Comput. and Appl. Math., 279 (2015), 57-66.  doi: 10.1016/j.cam.2014.10.016.  Google Scholar

[11]

T. Abdeljawad and F. Jarad, Variational principles in the frame of certain generalized fractional derivatives, submitted. Google Scholar

[12]

Y. AdjabiF. Jarad and T. Abdeljawad, On generalized fractional operators and a Gronwall type inequality with applications, Filomat J. Math., 31 (2017), 5457-5473.  doi: 10.2298/FIL1717457A.  Google Scholar

[13]

O. P. Agrawal, Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of Caputo derivative, J. Vib. Control, 13 (2007), 1217-1237.  doi: 10.1177/1077546307077472.  Google Scholar

[14]

R. Almeida, Variational problems involving a Caputo-type fractional derivative, J. of Optim. Theory Appl., 174 (2017), 276-294.  doi: 10.1007/s10957-016-0883-4.  Google Scholar

[15]

A. Atangana and D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., (2016), D4016005.  doi: 10.1061/(ASCE)EM.1943-7889.0001091.  Google Scholar

[16]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.  Google Scholar

[17]

A. Atangana and D. Baleanu, New fractional derivative with non-local and non-singular kernel, Thermal Sci., 20 (2016), 757-763.   Google Scholar

[18]

A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A: Statistical Mechanics and its Applications, 505 (2018), 688-706.  doi: 10.1016/j.physa.2018.03.056.  Google Scholar

[19]

A.Atangana and J. F. Gomez Aguila, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 41 (2018), 315403, 8 pp. Google Scholar

[20]

D. Baleanu, T. Abdeljawad and F. Jarad, Fractional variational principles with delay, Journal of Physica A: Math. and Theor., 41 (2008), 315403, 8 pp. doi: 10.1088/1751-8113/41/31/315403.  Google Scholar

[21]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernal, Progr. Fract. Differ. Appl., 1 (2015), 73-85.   Google Scholar

[22]

M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1-11.   Google Scholar

[23]

Y. Y. Gambo, F. Jarad, T. Abdeljawad and D. Baleanu, On Caputo modification of the Hadamard fractional derivative, Adv. Difference Equ., 2014 (2014), 12pp. doi: 10.1186/1687-1847-2014-10.  Google Scholar

[24]

R. Hilfer, Applications Of Fractional Calculus In Physics, Word Scientific, Singapore, 2000. doi: 10.1142/9789812817747.  Google Scholar

[25]

F. JaradD. Baleanu and T. Abdeljawad, Fractional variational principles with delay within Caputo derivatives, Reports on Mathematical Physics, 65 (2010), 17-28.  doi: 10.1016/S0034-4877(10)00010-8.  Google Scholar

[26]

F. JaradD. Baleanu and T. Abdeljawad, Fractional variational optimal control problems with delayed arguments, Nonlinear Dynamics, 62 (2010), 609-614.  doi: 10.1007/s11071-010-9748-9.  Google Scholar

[27]

F. JaradT. Abdeljawad and D. Baleanu, Higher order fractional variational optimal control problems with delayed arguments, Applied Mathematics and Computation, 218 (2012), 9234-9240.  doi: 10.1016/j.amc.2012.02.080.  Google Scholar

[28]

F. Jarad, T. Abdeljawad and D. Baleanu, On Riesz-Caputo formulation for sequential fractional variational principles, Abstract and Applied Analysis, 2012 (2012), Article ID 890396, 15 pages. doi: 10.1155/2012/890396.  Google Scholar

[29]

F. Jarad, T. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard fractional derivative, Adv. Difference Equ., 2012 (2012), 8pp. doi: 10.1186/1687-1847-2012-142.  Google Scholar

[30]

F. Jarad, E. Uǧurlu, T. Abdeljawad and D. Baleanu, On a new class of fractional operators, Advances in Difference Equations, 2017 (2017), Paper No. 247, 16 pp. doi: 10.1186/s13662-017-1306-z.  Google Scholar

[31]

F. JaradT. Abdeljawad and D. Baleanu, On the generalized fractional derivatives and their Caputo modification, Journal of Nonlinear Sciences and Applications, 10 (2017), 2607-2619.  doi: 10.22436/jnsa.010.05.27.  Google Scholar

[32]

U. N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865.  doi: 10.1016/j.amc.2011.03.062.  Google Scholar

[33]

U. N. Katugampola, A new approach to generalized fractional derivatives, Bul. Math. Anal.Appl., 6 (2014), 1-15.   Google Scholar

[34]

A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory And Application Of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[35]

A. A. Kilbas, Hadamard type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204.   Google Scholar

[36]

K. Ervin Lenzi, A. A. Tateishi and H. Ribeiro, The Role of Fractional Time-Derivative Operators on Anomalous Diffusion, Frontiers in Physics., 2017. Google Scholar

[37]

J. Losada and J. J. Nieto, Properties of a new fractional derivative without singular kernal, Progr. Fract. Differ. Appl., 1 (2015), 87-92.   Google Scholar

[38]

R. L. Magin, Fractional Calculus In Bioengineering, Begell House Publishers, 2006. Google Scholar

[39]

I. Podlubny, Fractional Differential Equations, Academic Press: San Diego CA, 1999.  Google Scholar

[40]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals And Derivatives: Theory And Applications, Gordon and Breach, Yverdon, 1993.  Google Scholar

[41]

J. Tariboon, S. K. Ntouyas and P. Agarwal, New concepts of fractional quabtum calculus and applications to impulsive fractional q-difference equations, Adv. Differ. Eqns., 2015 (2015), 19pp. doi: 10.1186/s13662-014-0348-8.  Google Scholar

show all references

References:
[1]

T. Abdeljawad and D. Baleanu, Integration by parts and its application of a new nonlocal fractional derivative with Mittag-Leffler kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098-1107.  doi: 10.22436/jnsa.010.03.20.  Google Scholar

[2]

T. Abdeljawad and D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Journal of Reports in Mathematical Physics, 80 (2017), 11-27.  doi: 10.1016/S0034-4877(17)30059-9.  Google Scholar

[3]

T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, Journal of Inequalities and Applications, 2017 (2017), Paper No. 130, 11 pp. doi: 10.1186/s13660-017-1400-5.  Google Scholar

[4]

T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Advances in Difference Equations, 2017 (2017), Paper No. 313, 11 pp. doi: 10.1186/s13662-017-1285-0.  Google Scholar

[5]

T. Abdeljawad and Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall's inequality, Journal of Computational and Applied Mathematics, 339 (2018), 218-230.  doi: 10.1016/j.cam.2017.10.021.  Google Scholar

[6]

T. Abdeljawad and D. Baleanu, Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels, Advances in Difference Equations, 2016 (2016), Paper No. 232, 18 pp. doi: 10.1186/s13662-016-0949-5.  Google Scholar

[7]

T. Abdeljawad and D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Advances in Difference Equations, 2017 (2017), Paper No. 78, 9 pp. doi: 10.1186/s13662-017-1126-1.  Google Scholar

[8]

T. Abdeljawad and D. Baleanu, Monotonicity results for a nabla fractional difference operator with discrete Mittag-Leffler kernels, Chaos, Solitons and Fractals, 102 (2017), 106-110.  doi: 10.1016/j.chaos.2017.04.006.  Google Scholar

[9]

T. Abdeljawad, Q. M. Al-Mdallal and M. A. Hajji, Arbitrary order fractional difference operators with discrete exponential kernels and applications, Discrete Dynamics in Nature and Society, 2017 (2017), Article ID 4149320, 8 pages. doi: 10.1155/2017/4149320.  Google Scholar

[10]

T. Abdeljawad, On conformable fractional calculus, Journal of Comput. and Appl. Math., 279 (2015), 57-66.  doi: 10.1016/j.cam.2014.10.016.  Google Scholar

[11]

T. Abdeljawad and F. Jarad, Variational principles in the frame of certain generalized fractional derivatives, submitted. Google Scholar

[12]

Y. AdjabiF. Jarad and T. Abdeljawad, On generalized fractional operators and a Gronwall type inequality with applications, Filomat J. Math., 31 (2017), 5457-5473.  doi: 10.2298/FIL1717457A.  Google Scholar

[13]

O. P. Agrawal, Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of Caputo derivative, J. Vib. Control, 13 (2007), 1217-1237.  doi: 10.1177/1077546307077472.  Google Scholar

[14]

R. Almeida, Variational problems involving a Caputo-type fractional derivative, J. of Optim. Theory Appl., 174 (2017), 276-294.  doi: 10.1007/s10957-016-0883-4.  Google Scholar

[15]

A. Atangana and D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., (2016), D4016005.  doi: 10.1061/(ASCE)EM.1943-7889.0001091.  Google Scholar

[16]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.  Google Scholar

[17]

A. Atangana and D. Baleanu, New fractional derivative with non-local and non-singular kernel, Thermal Sci., 20 (2016), 757-763.   Google Scholar

[18]

A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A: Statistical Mechanics and its Applications, 505 (2018), 688-706.  doi: 10.1016/j.physa.2018.03.056.  Google Scholar

[19]

A.Atangana and J. F. Gomez Aguila, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 41 (2018), 315403, 8 pp. Google Scholar

[20]

D. Baleanu, T. Abdeljawad and F. Jarad, Fractional variational principles with delay, Journal of Physica A: Math. and Theor., 41 (2008), 315403, 8 pp. doi: 10.1088/1751-8113/41/31/315403.  Google Scholar

[21]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernal, Progr. Fract. Differ. Appl., 1 (2015), 73-85.   Google Scholar

[22]

M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1-11.   Google Scholar

[23]

Y. Y. Gambo, F. Jarad, T. Abdeljawad and D. Baleanu, On Caputo modification of the Hadamard fractional derivative, Adv. Difference Equ., 2014 (2014), 12pp. doi: 10.1186/1687-1847-2014-10.  Google Scholar

[24]

R. Hilfer, Applications Of Fractional Calculus In Physics, Word Scientific, Singapore, 2000. doi: 10.1142/9789812817747.  Google Scholar

[25]

F. JaradD. Baleanu and T. Abdeljawad, Fractional variational principles with delay within Caputo derivatives, Reports on Mathematical Physics, 65 (2010), 17-28.  doi: 10.1016/S0034-4877(10)00010-8.  Google Scholar

[26]

F. JaradD. Baleanu and T. Abdeljawad, Fractional variational optimal control problems with delayed arguments, Nonlinear Dynamics, 62 (2010), 609-614.  doi: 10.1007/s11071-010-9748-9.  Google Scholar

[27]

F. JaradT. Abdeljawad and D. Baleanu, Higher order fractional variational optimal control problems with delayed arguments, Applied Mathematics and Computation, 218 (2012), 9234-9240.  doi: 10.1016/j.amc.2012.02.080.  Google Scholar

[28]

F. Jarad, T. Abdeljawad and D. Baleanu, On Riesz-Caputo formulation for sequential fractional variational principles, Abstract and Applied Analysis, 2012 (2012), Article ID 890396, 15 pages. doi: 10.1155/2012/890396.  Google Scholar

[29]

F. Jarad, T. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard fractional derivative, Adv. Difference Equ., 2012 (2012), 8pp. doi: 10.1186/1687-1847-2012-142.  Google Scholar

[30]

F. Jarad, E. Uǧurlu, T. Abdeljawad and D. Baleanu, On a new class of fractional operators, Advances in Difference Equations, 2017 (2017), Paper No. 247, 16 pp. doi: 10.1186/s13662-017-1306-z.  Google Scholar

[31]

F. JaradT. Abdeljawad and D. Baleanu, On the generalized fractional derivatives and their Caputo modification, Journal of Nonlinear Sciences and Applications, 10 (2017), 2607-2619.  doi: 10.22436/jnsa.010.05.27.  Google Scholar

[32]

U. N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865.  doi: 10.1016/j.amc.2011.03.062.  Google Scholar

[33]

U. N. Katugampola, A new approach to generalized fractional derivatives, Bul. Math. Anal.Appl., 6 (2014), 1-15.   Google Scholar

[34]

A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory And Application Of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[35]

A. A. Kilbas, Hadamard type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204.   Google Scholar

[36]

K. Ervin Lenzi, A. A. Tateishi and H. Ribeiro, The Role of Fractional Time-Derivative Operators on Anomalous Diffusion, Frontiers in Physics., 2017. Google Scholar

[37]

J. Losada and J. J. Nieto, Properties of a new fractional derivative without singular kernal, Progr. Fract. Differ. Appl., 1 (2015), 87-92.   Google Scholar

[38]

R. L. Magin, Fractional Calculus In Bioengineering, Begell House Publishers, 2006. Google Scholar

[39]

I. Podlubny, Fractional Differential Equations, Academic Press: San Diego CA, 1999.  Google Scholar

[40]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals And Derivatives: Theory And Applications, Gordon and Breach, Yverdon, 1993.  Google Scholar

[41]

J. Tariboon, S. K. Ntouyas and P. Agarwal, New concepts of fractional quabtum calculus and applications to impulsive fractional q-difference equations, Adv. Differ. Eqns., 2015 (2015), 19pp. doi: 10.1186/s13662-014-0348-8.  Google Scholar

[1]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[2]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[3]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[4]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282

[5]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[6]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[7]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[8]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[9]

Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029

[10]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[11]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020394

[12]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[13]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[14]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[15]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[16]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[17]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[18]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[19]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[20]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (338)
  • HTML views (613)
  • Cited by (5)

Other articles
by authors

[Back to Top]