• Previous Article
    New aspects of time fractional optimal control problems within operators with nonsingular kernel
  • DCDS-S Home
  • This Issue
  • Next Article
    MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives
March  2020, 13(3): 389-406. doi: 10.3934/dcdss.2020022

Implementation of the vehicular occupancy-emission relation using a cubic B-splines collocation method

1. 

Department of Computer Sciences, Faculty of Sciences and Techniques, University Moulay Ismail, BP 509 Boutalamine Errachidia, Morocco

2. 

Department of Mathematics, Laboratory LMPA, University Littoral Cote d'Opale, France

* Corresponding author: Sofiya Chergui

Received  July 2018 Revised  August 2018 Published  March 2019

The complexity and non-linearity of flow phenomena are explained by numerous criteria, including the interactions of the large number of vehicles occupying the road, which influence the road density. This density under certain conditions, leads to traffic congestion which has dangerous effects on the environment such as; resources consumption; noise and the effect caused by greenhouse gas emissions of the $ CO_{2} $ and other pollutants. In this paper we consider working in an uniform, homogeneous road where the traffic is described by the Lighthill Whitham-Richard (LWR) model resolved using a cubic B-spline collocation scheme in space and an implicit Runge Kutta scheme in time. We also shed light on the relation between vehicle occupancy and vehicle emissions.

Citation: Said Agoujil, Abderrahman Bouhamidi, Sofiya Chergui, Youssef Qaraai. Implementation of the vehicular occupancy-emission relation using a cubic B-splines collocation method. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 389-406. doi: 10.3934/dcdss.2020022
References:
[1]

W. F. Adams, Road traffic considered as a random series, J. Inst. Civil Engineers, 4 (1936), 121-130.   Google Scholar

[2]

S. Ardekani, E. Hauer and B. Jamei, Traffic impact models, In: Traffic Flow Theory. US Federal Highway Administration, Washington, DC, (1996), p1. Google Scholar

[3]

T. Bektas and G. Laporte, The pollution-routing problem, Transportation Research Part B, 45 (2011), 1232-1250.  doi: 10.1016/j.trb.2011.02.004.  Google Scholar

[4]

G. Bharti and V. K. Kukreja, Numerical approach for solving diffusion problems using cubic B-spline collocation method, Applied Mathematics and Computation, 219 (2012), 2087-2099.  doi: 10.1016/j.amc.2012.08.053.  Google Scholar

[5] A. Bressan, Hyperbolic Systems of Conservation Laws, The One Dimensional Cauchy Problem. Oxford University Press, 2000.   Google Scholar
[6]

D. Catalin, Contributions à la Modélisation et la Commande des Réseaux de Trafic Routier, Ph.D thesis, Ecole Centrale de Lille et le Departement AIS, Universit Politehnica de Bucarest, 2013. Google Scholar

[7]

D. Catalin, D. T. Genevive and D. Popescu, Macroscopic modeling of road traffic by using hydrodynamic flow models, 20th Mediterranean Conference on Control and Automation, (2012). doi: 10.1109/MED.2012.6265612.  Google Scholar

[8]

D. Catalin, D. Popescu and D. Stefanoiu, Fuzzy modeling and control for a road section, 18th International Conference on System Theory, (2014). Google Scholar

[9]

R. E. ChandlerR. Herman and E. W. Montroll, Traffic dynamics: Studies in car following, Operation Research, 6 (1958), 165-184.  doi: 10.1287/opre.6.2.165.  Google Scholar

[10]

C. F. Daganzo, Fundamentals of Transportation and Traffic Operations, Pergamon, 1997. doi: 10.1108/9780585475301.  Google Scholar

[11]

S. DarbhaK. R. Rajagopal and V. Tyagi, A review of mathematical models for the flow of traffic and some recent results, Nonlinear Analysis, 69 (2008), 950-970.  doi: 10.1016/j.na.2008.02.123.  Google Scholar

[12]

C. De Boor, A Practical Guide to Splines, Springer-Velay, Berlin, 1978.  Google Scholar

[13]

J. S. Drake, J. L. Schfer and A. May, A Statistical Analysis of Speed Density Hypotheses, Proceedings of the Third International Symposium on the Theory of Traffic Flow, Elsevier North-Holland, New York, 1967. Google Scholar

[14]

A. Esen and O. Tasbozan, Cubic B-spline collocation method for solving time fractional gas dynamics equation, Tbilisi Math. J., 8 (2015), 221-231.  doi: 10.1515/tmj-2015-0024.  Google Scholar

[15]

K. FagerholtG. Laporte and I. Norstad, Reducing fuel emissions by optimizing speed on shipping routes, Journal of the Operational Research Society, 61 (2010), 523-529.  doi: 10.1057/jors.2009.77.  Google Scholar

[16]

A. FranceschettiD. HonhonT. V. WoenselT. Bektas and G. Laporte, The time-dependent pollution-routing problem, Transportation Research Part B: Methodological, 56 (2013), 265-293.   Google Scholar

[17]

M. Gholamian and N. J. Saberi, Cubic B-splines collocation method for a class of partial integro-differential equation, Alexandria Engineering Journal, 57 (2018), 2157-2165.  doi: 10.1016/j.aej.2017.06.004.  Google Scholar

[18]

S. K. Godunov, A difference method for numerical calculations of discontinuous solutions of the equations of hydrodynamics, Matematicheskii Sbornik, 47 (1959), 271-306.   Google Scholar

[19]

S. GottlichU. Ziegler and M. Herty, Numerical discretization of Hamilton-Jacobi equation on networks, Netw. Heterog. Media, 8 (2013), 685-705.  doi: 10.3934/nhm.2013.8.685.  Google Scholar

[20]

B. D. Greenshields, A study of traffic capacity, Proceedings Highway Research Board, 14 (1934), 448-477.   Google Scholar

[21]

K. HanH. LiuV. V. GayahT. L. Friesz and T. Yao, A robust optimization approach for dynamic traffic signal control with emission considerations, Transportation Research Part C, 70 (2016), 3-26.  doi: 10.1016/j.trc.2015.04.001.  Google Scholar

[22]

O. Jabali, T. Van Woensel and A. G. de Kok, Analysis of travel times and CO2 emissions in time-dependent vehicle routing. Tech. rep., Eindhoven University of Technology; (2009). Google Scholar

[23]

M. Koshi, M. Iwasaki and I. Ohkura, Some findings and an overview on vehicular flow characteristics, In Proceedings of the 8th International Symposium on Transportation and Traffic Theory, Univ. of Toronto Press, Toronto, (1981), 403-426. Google Scholar

[24]

J. P. Lebacque, The godunov scheme and what it means for first order traffic flow models, In The International Symposium on Transportation and Traffic Theory, Lyon, France, (1996). Google Scholar

[25]

L. Leclercq, J. A. Laval and E. Chevallier, The lagrangian coordinates and what it means for first order traffic flow models, In R. Allsop and B. Heydecker (Eds), Transportation and traffic theory, (2007), 735-753. Google Scholar

[26]

M. Lighthill and G. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London, Series A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089.  Google Scholar

[27]

W. MadenR. W. Eglese and D. Black, Vehicle routing and scheduling with time varying data: A case study, Journal of the Operational Research Society, 61 (2010), 515-522.  doi: 10.1057/jors.2009.116.  Google Scholar

[28]

R. C. Mittal and R. Bhatia, Numerical solution of second order one dimensional hyperbolic telegraph equation by cubic B-spline collocation method, Applied Mathematics and Computation, 220 (2013), 496-506.  doi: 10.1016/j.amc.2013.05.081.  Google Scholar

[29]

R. C. Mittal and R. K. Jain, Redefined cubic B-splines collocation method for solving convection-diffusion equations, Applied Mathematical Modelling, 36 (2012), 5555-5573.  doi: 10.1016/j.apm.2012.01.009.  Google Scholar

[30]

R. C. Mittal and R. K. Jain, Cubic B-splines collocation method for solving nonlinear parabolic partial differential equations with Neumann boundary conditions, Commun Nonlinear Sci Numer Simulat, 17 (2012), 4616-4625.  doi: 10.1016/j.cnsns.2012.05.007.  Google Scholar

[31]

R. Mohammadi, Quintic B-spline collocation approach for solving generalized Black Scholes equation governing option pricing, Computers and Mathematics with Applications, 69 (2015), 777-797.  doi: 10.1016/j.camwa.2015.02.018.  Google Scholar

[32]

A. Palmer, The Development of an Integrated Routing and Carbon Dioxide Emissions Model for Goods Vehicles, Ph.D, thesis, Cranfield University, School of Management, 2007. Google Scholar

[33]

L. A. Pipes, An operational analysis of traffic dynamics, Journal of Applied Physics, 24 (1953), 274-281.  doi: 10.1063/1.1721265.  Google Scholar

[34]

K. PostJ. H. KentJ. Tomlin and N. Carruthers, Fuel consumption and emission modelling by power demand and a comparison with other models, Transport. Res. Part A: Policy Pract, 18 (1984), 191-213.  doi: 10.1016/0191-2607(84)90126-2.  Google Scholar

[35]

P. I. Richards, Shock waves on the highway, Oper. Res, 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.  Google Scholar

[36]

B. Saka and I. Dag, Quartic B-spline collocation method to the numerical solutions of the Burgers'equation, Chaos, Solitons and Fractals, 32 (2007), 1125-1137.  doi: 10.1016/j.chaos.2005.11.037.  Google Scholar

[37]

J. G. Wardrop, Some theoretical aspects of road traffic research, Proceedings of the Institution of Civil Engineers, Part II, 1 (1952), 325-362.   Google Scholar

[38]

J. Wenlong, Traffic Flow Models and Their Numerical Solutions, University of Science and Technology of China, 1998. Google Scholar

[39]

J. Wenlong, Traffic Flow Models and Their Numerical Solutions, University of California Davis, 2000. Google Scholar

[40]

G. C. K. Wong and S. C. Wong, A multi-class traffic flow model-an extension of LWR model with heterogeneous drivers, Transportation Research Part A, Policy and Practice, 36 (2013), 827-841. Google Scholar

[41]

N. Wu, A new approach for modeling of Fundamental Diagrams, Transportation Research Part A: Policy and Practice, 36 (2002), 867-884.  doi: 10.1016/S0965-8564(01)00043-X.  Google Scholar

show all references

References:
[1]

W. F. Adams, Road traffic considered as a random series, J. Inst. Civil Engineers, 4 (1936), 121-130.   Google Scholar

[2]

S. Ardekani, E. Hauer and B. Jamei, Traffic impact models, In: Traffic Flow Theory. US Federal Highway Administration, Washington, DC, (1996), p1. Google Scholar

[3]

T. Bektas and G. Laporte, The pollution-routing problem, Transportation Research Part B, 45 (2011), 1232-1250.  doi: 10.1016/j.trb.2011.02.004.  Google Scholar

[4]

G. Bharti and V. K. Kukreja, Numerical approach for solving diffusion problems using cubic B-spline collocation method, Applied Mathematics and Computation, 219 (2012), 2087-2099.  doi: 10.1016/j.amc.2012.08.053.  Google Scholar

[5] A. Bressan, Hyperbolic Systems of Conservation Laws, The One Dimensional Cauchy Problem. Oxford University Press, 2000.   Google Scholar
[6]

D. Catalin, Contributions à la Modélisation et la Commande des Réseaux de Trafic Routier, Ph.D thesis, Ecole Centrale de Lille et le Departement AIS, Universit Politehnica de Bucarest, 2013. Google Scholar

[7]

D. Catalin, D. T. Genevive and D. Popescu, Macroscopic modeling of road traffic by using hydrodynamic flow models, 20th Mediterranean Conference on Control and Automation, (2012). doi: 10.1109/MED.2012.6265612.  Google Scholar

[8]

D. Catalin, D. Popescu and D. Stefanoiu, Fuzzy modeling and control for a road section, 18th International Conference on System Theory, (2014). Google Scholar

[9]

R. E. ChandlerR. Herman and E. W. Montroll, Traffic dynamics: Studies in car following, Operation Research, 6 (1958), 165-184.  doi: 10.1287/opre.6.2.165.  Google Scholar

[10]

C. F. Daganzo, Fundamentals of Transportation and Traffic Operations, Pergamon, 1997. doi: 10.1108/9780585475301.  Google Scholar

[11]

S. DarbhaK. R. Rajagopal and V. Tyagi, A review of mathematical models for the flow of traffic and some recent results, Nonlinear Analysis, 69 (2008), 950-970.  doi: 10.1016/j.na.2008.02.123.  Google Scholar

[12]

C. De Boor, A Practical Guide to Splines, Springer-Velay, Berlin, 1978.  Google Scholar

[13]

J. S. Drake, J. L. Schfer and A. May, A Statistical Analysis of Speed Density Hypotheses, Proceedings of the Third International Symposium on the Theory of Traffic Flow, Elsevier North-Holland, New York, 1967. Google Scholar

[14]

A. Esen and O. Tasbozan, Cubic B-spline collocation method for solving time fractional gas dynamics equation, Tbilisi Math. J., 8 (2015), 221-231.  doi: 10.1515/tmj-2015-0024.  Google Scholar

[15]

K. FagerholtG. Laporte and I. Norstad, Reducing fuel emissions by optimizing speed on shipping routes, Journal of the Operational Research Society, 61 (2010), 523-529.  doi: 10.1057/jors.2009.77.  Google Scholar

[16]

A. FranceschettiD. HonhonT. V. WoenselT. Bektas and G. Laporte, The time-dependent pollution-routing problem, Transportation Research Part B: Methodological, 56 (2013), 265-293.   Google Scholar

[17]

M. Gholamian and N. J. Saberi, Cubic B-splines collocation method for a class of partial integro-differential equation, Alexandria Engineering Journal, 57 (2018), 2157-2165.  doi: 10.1016/j.aej.2017.06.004.  Google Scholar

[18]

S. K. Godunov, A difference method for numerical calculations of discontinuous solutions of the equations of hydrodynamics, Matematicheskii Sbornik, 47 (1959), 271-306.   Google Scholar

[19]

S. GottlichU. Ziegler and M. Herty, Numerical discretization of Hamilton-Jacobi equation on networks, Netw. Heterog. Media, 8 (2013), 685-705.  doi: 10.3934/nhm.2013.8.685.  Google Scholar

[20]

B. D. Greenshields, A study of traffic capacity, Proceedings Highway Research Board, 14 (1934), 448-477.   Google Scholar

[21]

K. HanH. LiuV. V. GayahT. L. Friesz and T. Yao, A robust optimization approach for dynamic traffic signal control with emission considerations, Transportation Research Part C, 70 (2016), 3-26.  doi: 10.1016/j.trc.2015.04.001.  Google Scholar

[22]

O. Jabali, T. Van Woensel and A. G. de Kok, Analysis of travel times and CO2 emissions in time-dependent vehicle routing. Tech. rep., Eindhoven University of Technology; (2009). Google Scholar

[23]

M. Koshi, M. Iwasaki and I. Ohkura, Some findings and an overview on vehicular flow characteristics, In Proceedings of the 8th International Symposium on Transportation and Traffic Theory, Univ. of Toronto Press, Toronto, (1981), 403-426. Google Scholar

[24]

J. P. Lebacque, The godunov scheme and what it means for first order traffic flow models, In The International Symposium on Transportation and Traffic Theory, Lyon, France, (1996). Google Scholar

[25]

L. Leclercq, J. A. Laval and E. Chevallier, The lagrangian coordinates and what it means for first order traffic flow models, In R. Allsop and B. Heydecker (Eds), Transportation and traffic theory, (2007), 735-753. Google Scholar

[26]

M. Lighthill and G. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London, Series A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089.  Google Scholar

[27]

W. MadenR. W. Eglese and D. Black, Vehicle routing and scheduling with time varying data: A case study, Journal of the Operational Research Society, 61 (2010), 515-522.  doi: 10.1057/jors.2009.116.  Google Scholar

[28]

R. C. Mittal and R. Bhatia, Numerical solution of second order one dimensional hyperbolic telegraph equation by cubic B-spline collocation method, Applied Mathematics and Computation, 220 (2013), 496-506.  doi: 10.1016/j.amc.2013.05.081.  Google Scholar

[29]

R. C. Mittal and R. K. Jain, Redefined cubic B-splines collocation method for solving convection-diffusion equations, Applied Mathematical Modelling, 36 (2012), 5555-5573.  doi: 10.1016/j.apm.2012.01.009.  Google Scholar

[30]

R. C. Mittal and R. K. Jain, Cubic B-splines collocation method for solving nonlinear parabolic partial differential equations with Neumann boundary conditions, Commun Nonlinear Sci Numer Simulat, 17 (2012), 4616-4625.  doi: 10.1016/j.cnsns.2012.05.007.  Google Scholar

[31]

R. Mohammadi, Quintic B-spline collocation approach for solving generalized Black Scholes equation governing option pricing, Computers and Mathematics with Applications, 69 (2015), 777-797.  doi: 10.1016/j.camwa.2015.02.018.  Google Scholar

[32]

A. Palmer, The Development of an Integrated Routing and Carbon Dioxide Emissions Model for Goods Vehicles, Ph.D, thesis, Cranfield University, School of Management, 2007. Google Scholar

[33]

L. A. Pipes, An operational analysis of traffic dynamics, Journal of Applied Physics, 24 (1953), 274-281.  doi: 10.1063/1.1721265.  Google Scholar

[34]

K. PostJ. H. KentJ. Tomlin and N. Carruthers, Fuel consumption and emission modelling by power demand and a comparison with other models, Transport. Res. Part A: Policy Pract, 18 (1984), 191-213.  doi: 10.1016/0191-2607(84)90126-2.  Google Scholar

[35]

P. I. Richards, Shock waves on the highway, Oper. Res, 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.  Google Scholar

[36]

B. Saka and I. Dag, Quartic B-spline collocation method to the numerical solutions of the Burgers'equation, Chaos, Solitons and Fractals, 32 (2007), 1125-1137.  doi: 10.1016/j.chaos.2005.11.037.  Google Scholar

[37]

J. G. Wardrop, Some theoretical aspects of road traffic research, Proceedings of the Institution of Civil Engineers, Part II, 1 (1952), 325-362.   Google Scholar

[38]

J. Wenlong, Traffic Flow Models and Their Numerical Solutions, University of Science and Technology of China, 1998. Google Scholar

[39]

J. Wenlong, Traffic Flow Models and Their Numerical Solutions, University of California Davis, 2000. Google Scholar

[40]

G. C. K. Wong and S. C. Wong, A multi-class traffic flow model-an extension of LWR model with heterogeneous drivers, Transportation Research Part A, Policy and Practice, 36 (2013), 827-841. Google Scholar

[41]

N. Wu, A new approach for modeling of Fundamental Diagrams, Transportation Research Part A: Policy and Practice, 36 (2002), 867-884.  doi: 10.1016/S0965-8564(01)00043-X.  Google Scholar

Figure 1.  Approximate density (veh/m)
Figure 2.  Approximate density. Vs exact density (veh/m)
Figure 3.  The variations of Link occupancy in time
Figure 4.  The evolution of hydrocarbon emission rate in time
Figure 5.  Aggregate emission rate vs. link occupancy
Figure 6.  Flow.Vs density (fundamental diagram)
Figure 7.  Travel speed
Table 1.  coefficients of $ B_{j} $ and its derivatives
$ x $ $ x_{j-1} $ $ x_{j} $ $ x_{j+1} $
$ B_{j} $ $ \frac{1}{6} $ $ \frac{4}{6} $ $ \frac{1}{6} $
$ B^{'}_{j} $ $ \frac{-1}{2h} $ $ 0 $ $ \frac{1}{2h} $
$ B^{''}_{j} $ $ \frac{1}{h^{2}} $ $ \frac{-2}{h^{2}} $ $ \frac{1}{h^{2}} $
$ x $ $ x_{j-1} $ $ x_{j} $ $ x_{j+1} $
$ B_{j} $ $ \frac{1}{6} $ $ \frac{4}{6} $ $ \frac{1}{6} $
$ B^{'}_{j} $ $ \frac{-1}{2h} $ $ 0 $ $ \frac{1}{2h} $
$ B^{''}_{j} $ $ \frac{1}{h^{2}} $ $ \frac{-2}{h^{2}} $ $ \frac{1}{h^{2}} $
[1]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[2]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[3]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[4]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[5]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[6]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[7]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[8]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[9]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[10]

Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021007

[11]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[12]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[13]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[14]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[15]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[16]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[17]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[18]

Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139

[19]

C. J. Price. A modified Nelder-Mead barrier method for constrained optimization. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020058

[20]

Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (196)
  • HTML views (649)
  • Cited by (0)

[Back to Top]