\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

New aspects of time fractional optimal control problems within operators with nonsingular kernel

  • * Corresponding author: Tuğba Akman Yıldız

    * Corresponding author: Tuğba Akman Yıldız 

PhD graduate from Department of Mathematics, Middle East Technical University, Ankara, Turkey

Abstract Full Text(HTML) Figure(8) / Table(9) Related Papers Cited by
  • This paper deals with a new formulation of time fractional optimal control problems governed by Caputo-Fabrizio (CF) fractional derivative. The optimality system for this problem is derived, which contains the forward and backward fractional differential equations in the sense of CF. These equations are then expressed in terms of Volterra integrals and also solved by a new numerical scheme based on approximating the Volterra integrals. The linear rate of convergence for this method is also justified theoretically. We present three illustrative examples to show the performance of this method. These examples also test the contribution of using CF derivative for dynamical constraints and we observe the efficiency of this new approach compared to the classical version of fractional operators.

    Mathematics Subject Classification: Primary: 49K99, 34A08; Secondary: 34H05, 49M25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Example 1: Comparative results of $u(t)$ and $u^*(t)$ for $M = 800$ and $\alpha = \{0.6, 0.7, 0.8, 0.9\}$

    Figure 2.  Example 1: Comparative results of $x(t)$ and $x^*(t)$ for $M = 800$ and $\alpha = \{0.6, 0.7, 0.8, 0.9\}$

    Figure 3.  Example 1: The absolute error plots for $x(t)$ (left) and $u(t)$ (right) with $M = 800$ and $\alpha = \{0.6, 0.7, 0.8, 0.9\}$

    Figure 4.  Example 2: Numerical results of $x(t)$ (left) and $u(t)$ (right)

    Figure 5.  Example 2: Numerical results of $x(t)$ for Caputo and CF derivatives

    Figure 6.  Example 3: Numerical results of $x_1(t)$, $x_2(t)$ and $u(t)$

    Figure 7.  Example 3: Numerical results of $x_1(t)$ for Caputo and CF derivatives

    Figure 8.  Example 3: Numerical results of $x_2(t)$ for Caputo and CF derivatives

    Table 1.  Example 1: The values of J, absolute error, order of convergence and computational time (CT) for α = {0.6, 0.7}

    $\alpha=0.6$ $\alpha=0.7$
    $M$ $J$ $e_J$ $r_J$ CT $J$ $e_J$ $r_J$ CT
    50 4.2795 0.0116 - 0.33 6.1951 0.0309 - 0.29
    100 4.2818 0.0058 1.00 0.43 6.2030 0.0154 1.00 0.41
    200 4.2838 0.0029 1.00 0.74 6.2088 0.0077 1.00 0.77
    400 4.2850 0.0015 0.95 2.97 6.2122 0.0039 0.98 2.88
    800 4.2857 0.00073 1.03 18.91 6.2140 0.0019 1.03 19.74
     | Show Table
    DownLoad: CSV

    Table 2.  Example 1: The values of $J$, absolute error, order of convergence and computational time (CT) for $\alpha = \{0.8, 0.9\}$.

    $\alpha=0.8$ $\alpha=0.9$
    $M$ $J$ $e_J$ $r_J$ CT $J$ $e_J$ $r_J$ CT
    50 9.9900 0.0863 - 0.31 20.2108 0.2844 - 0.27
    100 10.0091 0.0432 0.99 0.38 20.1666 0.1425 0.99 0.40
    200 10.0247 0.0216 1.00 0.76 20.1912 0.0713 0.99 0.74
    400 10.0339 0.0108 1.00 2.43 20.2152 0.0356 1.00 2.90
    800 10.0390 0.0054 1.00 18.85 20.2301 0.0178 1.00 19.18
     | Show Table
    DownLoad: CSV

    Table 3.  Example 1: The values of absolute error for $x(t)$ and the order of convergence for $\alpha = \{0.6, 0.7, 0.8, 0.9\}$

    $\alpha=0.6$ $\alpha=0.7$ $\alpha=0.8$ $\alpha=0.9$
    $M$ $e_x$ $r_x$ $e_x$ $r_x$ $e_x$ $r_x$ $e_x$ $r_x$
    50 0.0090 - 0.0085 - 0.0146 - 0.0531 -
    100 0.0045 1.00 0.0043 0.98 0.0072 1.01 0.0260 1.03
    200 0.0022 1.03 0.0021 1.03 0.0036 1.00 0.0129 1.01
    400 0.0011 1.00 0.0011 0.93 0.0018 1.00 0.0064 1.01
    800 5.57e-04 0.98 5.34e-04 1.04 8.91e-04 1.01 0.0032 1.00
     | Show Table
    DownLoad: CSV

    Table 4.  Example 1: The values of absolute error for $u(t)$ and the order of convergence for $\alpha = \{0.6, 0.7, 0.8, 0.9\}$

    $\alpha=0.6$ $\alpha=0.7$ $\alpha=0.8$ $\alpha=0.9$
    $M$ $e_u$ $r_u$ $e_u$ $r_u$ $e_u$ $r_u$ $e_u$ $r_u$
    50 0.0240 - 0.0417 - 0.0770 - 0.1914 -
    100 0.0120 1.00 0.0207 1.01 0.0381 1.01 0.0939 1.02
    200 0.0060 1.00 0.0103 1.00 0.0190 1.00 0.0465 1.01
    400 0.0030 1.00 0.0051 1.01 0.0095 1.00 0.0232 1.00
    800 0.0015 1.00 0.0026 0.97 0.0047 1.01 0.0116 1.00
     | Show Table
    DownLoad: CSV

    Table 5.  Example 2: The values of $J$ and computational time (CT)

    $\alpha=0.7$ $\alpha=0.8$ $\alpha=0.9$ $\alpha=1$
    $M$ $J$ CT $J$ CT $J$ CT $J$ CT
    50 0.2048 0.08 0.1912 0.08 0.1817 0.08 0.1754 0.08
    100 0.2008 0.15 0.1909 0.15 0.1856 0.14 0.1842 0.14
    200 0.2019 0.41 0.1945 0.40 0.1920 0.39 0.1940 0.41
    400 0.2031 1.70 0.1971 1.67 0.1963 1.71 0.2002 1.61
    800 0.2039 17.17 0.1986 17.55 0.1986 16.96 0.2035 17.18
     | Show Table
    DownLoad: CSV

    Table 6.  Example 2: The comparative values of $J$ with $M = 800$

    $J$
    FD $\alpha=0.7$ $\alpha=0.8$ $\alpha=0.9$ $\alpha=1$
    Caputo 0.2301 0.2073 0.2002 0.2035
    CF 0.2039 0.1986 0.1986 0.2035
     | Show Table
    DownLoad: CSV

    Table 7.  Example 3: The values of $J$, rate of convergence and computational time (CT) for $\alpha = \{0.7, 0.8\}$

    $\alpha=0.7$ $\alpha=0.8$
    $N$ $J_{N}$ $J_N - J_{N/2}$ $\rho$ CT $J_{N}$ $J_N - J_{N/2}$ $\rho$ CT
    50 12.1411 - - 0.63 13.8799 - - 0.64
    100 7.9860 4.1551 - 1.32 8.6678 5.2121 - 1.25
    200 6.6614 1.3246 1.65 4.31 6.9545 1.7133 1.61 4.33
    400 6.1602 0.5012 1.40 17.18 6.3194 0.6351 1.43 16.97
    800 5.9455 0.2147 1.22 146.48 6.0524 0.2670 1.25 144.69
     | Show Table
    DownLoad: CSV

    Table 8.  Example 3: The values of $J$, rate of convergence and computational time (CT) for $\alpha = \{0.9, 1\}$

    $\alpha=0.9$ $\alpha=1$
    $N$ $J_{N}$ $J_N - J_{N/2}$ $\rho$ CT $J_{N}$ $J_N - J_{N/2}$ $\rho$ CT
    50 15.6616 - - 0.73 18.3533 - - 0.69
    100 9.9329 5.7287 - 1.39 12.3690 5.9843 - 1.73
    200 7.7685 2.1644 1.40 4.30 9.7979 2.5711 1.22 3.81
    400 6.9493 0.8192 1.40 18.26 8.7483 1.0496 1.29 18.53
    800 6.6071 0.3422 1.26 148.13 8.3018 0.4465 1.23 167.40
     | Show Table
    DownLoad: CSV

    Table 9.  Example 3: The comparative values of $J$ with $M = 800$

    $J$
    FD $\alpha=0.7$ $\alpha=0.8$ $\alpha=0.9$ $\alpha=1$
    Caputo 6.6976 6.6329 7.1959 8.3018
    CF 5.9455 6.0524 6.6071 8.3018
     | Show Table
    DownLoad: CSV
  • [1] T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Advances in Difference Equations, 2017 (2017), Paper No. 313, 11 pp. doi: 10.1186/s13662-017-1285-0.
    [2] T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, Journal of Inequalities and Applications, 2017 (2017), Paper No. 130, 11 pp. doi: 10.1186/s13660-017-1400-5.
    [3] T. Abdeljawad and Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall's inequality, Journal of Computational and Applied Mathematics, 339 (2018), 218-230.  doi: 10.1016/j.cam.2017.10.021.
    [4] T. Abdeljawad and D. Baleanu, Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels, Advances in Difference Equations, 2016 (2016), Paper No. 232, 18 pp. doi: 10.1186/s13662-016-0949-5.
    [5] T. Abdeljawad and D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, Journal of Nonlinear Sciences and Applications, 10 (2017), 1098-1107.  doi: 10.22436/jnsa.010.03.20.
    [6] T. Abdeljawad and D. Baleanu, Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel, Chaos, Solitons & Fractals, 102 (2017), 106-110.  doi: 10.1016/j.chaos.2017.04.006.
    [7] T. Abdeljawad and D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Advances in Difference Equations, 2017 (2017), Paper No. 78, 9 pp. doi: 10.1186/s13662-017-1126-1.
    [8] T. Abdeljawad and D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Reports on Mathematical Physics, 80 (2017), 11-27.  doi: 10.1016/S0034-4877(17)30059-9.
    [9] T. Abdeljawad and F. Madjidi, Lyapunov-type inequalities for fractional difference operators with discrete Mittag-Leffler kernel of order 2 < α < 5/2, The European Physical Journal Special Topics, 226 (2017), 3355-3368. 
    [10] O. Agrawal, General formulation for the numerical solution of optimal control problems, International Journal of Control, 50 (1989), 627-638.  doi: 10.1080/00207178908953385.
    [11] M. Al-Refai and T. Abdeljawad, Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel, Advances in Difference Equations, 2017 (2017), Paper No. 315, 12 pp. doi: 10.1186/s13662-017-1356-2.
    [12] B. S. AlkahtaniO. J. AlgahtaniR. S. Dubey and P. Goswam, The solution of modified fractional Bergman's minimal blood glucose-insulin model, Entropy, 19 (2017), 114.  doi: 10.3390/e19050114.
    [13] A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769. 
    [14] R. L. Bagley and P. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, Journal of Rheology, 27 (1983), 201-210.  doi: 10.1122/1.549724.
    [15] D. BaleanuA. Jajarmi and M. Hajipour, A new formulation of the fractional optimal control problems involving Mittag–Leffler nonsingular kernel, Journal of Optimization Theory and Applications, 175 (2017), 718-737.  doi: 10.1007/s10957-017-1186-0.
    [16] R. K. Biswas and S. Sen, Fractional optimal control problems with specified final time, Journal of Computational and Nonlinear Dynamics, 6 (2011), 021009.  doi: 10.1115/1.4002508.
    [17] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 1-13. 
    [18] M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progress in Fractional Differentiation and Applications, 2 (2016), 1-11.  doi: 10.18576/pfda/020101.
    [19] S. ChoiE. Jung and S.-M. Lee, Optimal intervention strategy for prevention tuberculosis using a smoking–tuberculosis model, Journal of Theoretical Biology, 380 (2015), 256-270.  doi: 10.1016/j.jtbi.2015.05.022.
    [20] G. M. CocliteM. Garavello and L. V. Spinolo, Optimal strategies for a time-dependent harvesting problem, Discrete & Continuous Dynamical Systems-S, 11 (2018), 865-900.  doi: 10.3934/dcdss.2018053.
    [21] E. F. Doungmo Goufo and S. Mugisha, On analysis of fractional Navier-Stokes equations via nonsingular solutions and approximation, Mathematical Problems in Engineering, 2015 (2015), Art. ID 212760, 8 pp. doi: 10.1155/2015/212760.
    [22] N. Ejlali and S. M. Hosseini, A pseudospectral method for fractional optimal control problems, Journal of Optimization Theory and Applications, 174 (2017), 83-107.  doi: 10.1007/s10957-016-0936-8.
    [23] M. Enelund and P. Olsson, Damping described by fading memory–analysis and application to fractional derivative models, International Journal of Solids and Structures, 36 (1999), 939-970.  doi: 10.1016/S0020-7683(97)00339-9.
    [24] J. Fujioka, A. Espinosa, R. F. Rodríguez and B. A. Malomed, Radiating subdispersive fractional optical solitons, Chaos, 24 (2014), 033121, 11pp. doi: 10.1063/1.4892616.
    [25] D.-p. Gao and N.-j. Huang, Optimal control analysis of a tuberculosis model, Applied Mathematical Modelling, 58 (2018), 47-64.  doi: 10.1016/j.apm.2017.12.027.
    [26] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, 2000. doi: 10.1142/9789812817747.
    [27] J. Hristov, Derivation of fractional Dodson's equation and beyond: Transient mass diffusion with a non-singular memory and exponentially fading–out diffusivity, Progress in Fractional Differentiation and Applications, 3 (2017), 255-270. 
    [28] J. Hristov, Transient heat diffusion with a non-singular fading memory: From the Cattaneo constitutive equation with Jeffrey's kernel to the Caputo–Fabrizio time-fractional derivative, Thermal Science, 20 (2016), 757-762. 
    [29] J. Hristov, Derivatives with non-singular kernels from the caputo–fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models, Frontiers in Fractional Calculus. Sharjah: Bentham Science Publishers, 1 (2018), 269-341. 
    [30] C. IonescuK. Desager and R. De Keyser, Fractional order model parameters for the respiratory input impedance in healthy and in asthmatic children, Computer Methods and Programs in Biomedicine, 101 (2011), 315-323.  doi: 10.1016/j.cmpb.2010.11.010.
    [31] C. M. Ionescu and R. De Keyser, Relations between fractional-order model parameters and lung pathology in chronic obstructive pulmonary disease, IEEE Transactions on Biomedical Engineering, 56 (2009), 978-987.  doi: 10.1109/TBME.2008.2004966.
    [32] S. Jahanshahi and D. F. Torres, A simple accurate method for solving fractional variational and optimal control problems, Journal of Optimization Theory and Applications, 174 (2017), 156-175.  doi: 10.1007/s10957-016-0884-3.
    [33] F. JaradT. Abdeljawad and D. Baleanu, Higher order fractional variational optimal control problems with delayed arguments, Applied Mathematics and Computation, 218 (2012), 9234-9240.  doi: 10.1016/j.amc.2012.02.080.
    [34] Z. D. Jelicic and N. Petrovacki, Optimality conditions and a solution scheme for fractional optimal control problems, Struct. Multidiscip. Optim., 38 (2009), 571–581, URL http://dx.doi.org/10.1007/s00158-008-0307-7. doi: 10.1007/s00158-008-0307-7.
    [35] T. Kaczorek, Reachability of fractional continuous-time linear systems using the Caputo–Fabrizio derivative, in ECMS, 2016, 53–58. doi: 10.7148/2016-0053.
    [36] T. Kaczorek and K. Borawski, Fractional descriptor continuous–time linear systems described by the Caputo–Fabrizio derivative, International Journal of Applied Mathematics and Computer Science, 26 (2016), 533-541.  doi: 10.1515/amcs-2016-0037.
    [37] C. K. KwuimyG. Litak and C. Nataraj, Nonlinear analysis of energy harvesting systems with fractional order physical properties, Nonlinear Dynamics, 80 (2015), 491-501.  doi: 10.1007/s11071-014-1883-2.
    [38] C. Li and F. Zeng, The finite difference methods for fractional ordinary differential equations, Numer. Funct. Anal. Optim., 34 (2013), 149-179.  doi: 10.1080/01630563.2012.706673.
    [39] C. Li and F. Zeng, Numerical Methods for Fractional Calculus, vol. 24, CRC Press, 2015.
    [40] J. Liouville, Mémoire: Sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions, J l'Ecole Polytéch, 13 (1832), 1-66. 
    [41] A. LotfiM. Dehghan and S. A. Yousefi, A numerical technique for solving fractional optimal control problems, Computers & Mathematics with Applications, 62 (2011), 1055-1067.  doi: 10.1016/j.camwa.2011.03.044.
    [42] R. L. Magin, Fractional Calculus in Bioengineering, Begell House Redding, 2006.
    [43] J. P. MateusP. RebeloS. RosaC. M. Silva and D. F. Torres, Optimal control of non-autonomous SEIRS models with vaccination and treatment, Discrete & Continuous Dynamical Systems-S, 11 (2018), 1179-1199.  doi: 10.3934/dcdss.2018067.
    [44] V. Morales-DelgadoJ. Gómez-Aguilar and M. Taneco-Hernandez, Analytical solutions for the motion of a charged particle in electric and magnetic fields via non-singular fractional derivatives, The European Physical Journal Plus, 132 (2017), 527.  doi: 10.1140/epjp/i2017-11798-7.
    [45] A. Nemati and S. A. Yousefi, A numerical scheme for solving two-dimensional fractional optimal control problems by the Ritz method combined with fractional operational matrix, IMA Journal of Mathematical Control and Information, 34 (2017), 1079-1097.  doi: 10.1093/imamci/dnw009.
    [46] T. OhtsukaK. Shirakawa and N. Yamazaki, Optimal control problem for Allen–Cahn type equation associated with total variation energy, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 159-181.  doi: 10.3934/dcdss.2012.5.159.
    [47] I. Petráš and R. L. Magin, Simulation of drug uptake in a two compartmental fractional model for a biological system, Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 4588-4595. 
    [48] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA, 1999, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications.
    [49] S. PoosehR. Almeida and D. F. Torres, Fractional order optimal control problems with free terminal time, Journal of Industrial & Management Optimization, 10 (2014), 363-381.  doi: 10.3934/jimo.2014.10.363.
    [50] J. K. PopovićM. T. AtanackovićA. S. PilipovićM. R. RapaićS. Pilipović and T. M. Atanacković, A new approach to the compartmental analysis in pharmacokinetics: fractional time evolution of diclofenac, Journal of Pharmacokinetics and Pharmacodynamics, 37 (2010), 119-134. 
    [51] S. G. Samko, A. A. Kilbas, O. I. Marichev et al., Fractional Integrals and Derivatives, vol. 1993, 1993.
    [52] N. A. SheikhF. AliM. SaqibI. KhanS. A. A. JanA. S. Alshomrani and M. S. Alghamdi, Comparison and analysis of the Atangana–Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, Results in Physics, 7 (2017), 789-800.  doi: 10.1016/j.rinp.2017.01.025.
    [53] A. A. TateishiH. V. Ribeiro and E. K. Lenzi, The role of fractional time-derivative operators on anomalous diffusion, Frontiers in Physicss, 5 (2017), 52. 
    [54] D. Verotta, Fractional dynamics pharmacokinetics-pharmacodynamic models, Journal of Pharmacokinetics and Pharmacodynamics, 37 (2010), 257-276.  doi: 10.1007/s10928-010-9159-z.
    [55] J. Wang and Y. Zhou, A class of fractional evolution equations and optimal controls, Nonlinear Analysis: Real World Applications, 12 (2011), 262-272.  doi: 10.1016/j.nonrwa.2010.06.013.
    [56] S. H. Weinberg, Membrane capacitive memory alters spiking in neurons described by the fractional-order Hodgkin-Huxley model, PloS One, 10 (2015), e0126629.  doi: 10.1371/journal.pone.0126629.
    [57] D. Xue and L. Bai, Numerical algorithms for Caputo fractional-order differential equations, International Journal of Control, 90 (2017), 1201-1211.  doi: 10.1080/00207179.2016.1158419.
    [58] A.-M. YangY. HanJ. Li and W.-X. Liu, On steady heat flow problem involving Yang–Srivastava–Machado fractional derivative without singular kernel, Thermal Science, 20 (2016), 717-721.  doi: 10.2298/TSCI16S3717Y.
    [59] X.-J. YangF. GaoJ. Machado and D. Baleanu, A new fractional derivative involving the normalized Sinc function without singular kernel, The European Physical Journal Special Topics, 226 (2017), 3567-3575.  doi: 10.1140/epjst/e2018-00020-2.
    [60] J. Zhang, X. Ma and L. Li, Optimality conditions for fractional variational problems with Caputo–Fabrizio fractional derivatives, Advances in Difference Equations, 2017 (2017), Paper No. 357, 14 pp. doi: 10.1186/s13662-017-1388-7.
    [61] Y. ZhangH. SunH. H. StowellM. Zayernouri and S. E. Hansen, A review of applications of fractional calculus in Earth system dynamics, Chaos, Solitons & Fractals, 102 (2017), 29-46.  doi: 10.1016/j.chaos.2017.03.051.
  • 加载中

Figures(8)

Tables(9)

SHARE

Article Metrics

HTML views(1765) PDF downloads(1022) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return