# American Institute of Mathematical Sciences

• Previous Article
A new numerical scheme applied on re-visited nonlinear model of predator-prey based on derivative with non-local and non-singular kernel
• DCDS-S Home
• This Issue
• Next Article
Implementation of the vehicular occupancy-emission relation using a cubic B-splines collocation method
March  2020, 13(3): 407-428. doi: 10.3934/dcdss.2020023

## New aspects of time fractional optimal control problems within operators with nonsingular kernel

 1 Department of Logistics Management, University of Turkish Aeronautical Association, 06790 Ankara, Turkey 2 Department of Electrical Engineering, University of Bojnord, Bojnord, Iran 3 Hurma Mah., 252. Sokak, 2/5, Konyaaltı, Antalya, Turkey 4 Department of Mathematics, Çankaya University, 06530, Ankara, Turkey 5 Institute of Soft Matter Mechanics, Department of Engineering Mechanics, Hohai University, Nanjing, Jiangsu 210098, China 6 Institute of Space Sciences, Magurele-Bucharest 077125, Romania

* Corresponding author: Tuğba Akman Yıldız

PhD graduate from Department of Mathematics, Middle East Technical University, Ankara, Turkey

Received  June 2018 Revised  September 2018 Published  March 2019

This paper deals with a new formulation of time fractional optimal control problems governed by Caputo-Fabrizio (CF) fractional derivative. The optimality system for this problem is derived, which contains the forward and backward fractional differential equations in the sense of CF. These equations are then expressed in terms of Volterra integrals and also solved by a new numerical scheme based on approximating the Volterra integrals. The linear rate of convergence for this method is also justified theoretically. We present three illustrative examples to show the performance of this method. These examples also test the contribution of using CF derivative for dynamical constraints and we observe the efficiency of this new approach compared to the classical version of fractional operators.

Citation: Tuğba Akman Yıldız, Amin Jajarmi, Burak Yıldız, Dumitru Baleanu. New aspects of time fractional optimal control problems within operators with nonsingular kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 407-428. doi: 10.3934/dcdss.2020023
##### References:

show all references

##### References:
Example 1: Comparative results of $u(t)$ and $u^*(t)$ for $M = 800$ and $\alpha = \{0.6, 0.7, 0.8, 0.9\}$
Example 1: Comparative results of $x(t)$ and $x^*(t)$ for $M = 800$ and $\alpha = \{0.6, 0.7, 0.8, 0.9\}$
Example 1: The absolute error plots for $x(t)$ (left) and $u(t)$ (right) with $M = 800$ and $\alpha = \{0.6, 0.7, 0.8, 0.9\}$
Example 2: Numerical results of $x(t)$ (left) and $u(t)$ (right)
Example 2: Numerical results of $x(t)$ for Caputo and CF derivatives
Example 3: Numerical results of $x_1(t)$, $x_2(t)$ and $u(t)$
Example 3: Numerical results of $x_1(t)$ for Caputo and CF derivatives
Example 3: Numerical results of $x_2(t)$ for Caputo and CF derivatives
Example 1: The values of J, absolute error, order of convergence and computational time (CT) for α = {0.6, 0.7}
 $\alpha=0.6$ $\alpha=0.7$ $M$ $J$ $e_J$ $r_J$ CT $J$ $e_J$ $r_J$ CT 50 4.2795 0.0116 - 0.33 6.1951 0.0309 - 0.29 100 4.2818 0.0058 1.00 0.43 6.2030 0.0154 1.00 0.41 200 4.2838 0.0029 1.00 0.74 6.2088 0.0077 1.00 0.77 400 4.2850 0.0015 0.95 2.97 6.2122 0.0039 0.98 2.88 800 4.2857 0.00073 1.03 18.91 6.2140 0.0019 1.03 19.74
 $\alpha=0.6$ $\alpha=0.7$ $M$ $J$ $e_J$ $r_J$ CT $J$ $e_J$ $r_J$ CT 50 4.2795 0.0116 - 0.33 6.1951 0.0309 - 0.29 100 4.2818 0.0058 1.00 0.43 6.2030 0.0154 1.00 0.41 200 4.2838 0.0029 1.00 0.74 6.2088 0.0077 1.00 0.77 400 4.2850 0.0015 0.95 2.97 6.2122 0.0039 0.98 2.88 800 4.2857 0.00073 1.03 18.91 6.2140 0.0019 1.03 19.74
Example 1: The values of $J$, absolute error, order of convergence and computational time (CT) for $\alpha = \{0.8, 0.9\}$.
 $\alpha=0.8$ $\alpha=0.9$ $M$ $J$ $e_J$ $r_J$ CT $J$ $e_J$ $r_J$ CT 50 9.9900 0.0863 - 0.31 20.2108 0.2844 - 0.27 100 10.0091 0.0432 0.99 0.38 20.1666 0.1425 0.99 0.40 200 10.0247 0.0216 1.00 0.76 20.1912 0.0713 0.99 0.74 400 10.0339 0.0108 1.00 2.43 20.2152 0.0356 1.00 2.90 800 10.0390 0.0054 1.00 18.85 20.2301 0.0178 1.00 19.18
 $\alpha=0.8$ $\alpha=0.9$ $M$ $J$ $e_J$ $r_J$ CT $J$ $e_J$ $r_J$ CT 50 9.9900 0.0863 - 0.31 20.2108 0.2844 - 0.27 100 10.0091 0.0432 0.99 0.38 20.1666 0.1425 0.99 0.40 200 10.0247 0.0216 1.00 0.76 20.1912 0.0713 0.99 0.74 400 10.0339 0.0108 1.00 2.43 20.2152 0.0356 1.00 2.90 800 10.0390 0.0054 1.00 18.85 20.2301 0.0178 1.00 19.18
Example 1: The values of absolute error for $x(t)$ and the order of convergence for $\alpha = \{0.6, 0.7, 0.8, 0.9\}$
 $\alpha=0.6$ $\alpha=0.7$ $\alpha=0.8$ $\alpha=0.9$ $M$ $e_x$ $r_x$ $e_x$ $r_x$ $e_x$ $r_x$ $e_x$ $r_x$ 50 0.0090 - 0.0085 - 0.0146 - 0.0531 - 100 0.0045 1.00 0.0043 0.98 0.0072 1.01 0.0260 1.03 200 0.0022 1.03 0.0021 1.03 0.0036 1.00 0.0129 1.01 400 0.0011 1.00 0.0011 0.93 0.0018 1.00 0.0064 1.01 800 5.57e-04 0.98 5.34e-04 1.04 8.91e-04 1.01 0.0032 1.00
 $\alpha=0.6$ $\alpha=0.7$ $\alpha=0.8$ $\alpha=0.9$ $M$ $e_x$ $r_x$ $e_x$ $r_x$ $e_x$ $r_x$ $e_x$ $r_x$ 50 0.0090 - 0.0085 - 0.0146 - 0.0531 - 100 0.0045 1.00 0.0043 0.98 0.0072 1.01 0.0260 1.03 200 0.0022 1.03 0.0021 1.03 0.0036 1.00 0.0129 1.01 400 0.0011 1.00 0.0011 0.93 0.0018 1.00 0.0064 1.01 800 5.57e-04 0.98 5.34e-04 1.04 8.91e-04 1.01 0.0032 1.00
Example 1: The values of absolute error for $u(t)$ and the order of convergence for $\alpha = \{0.6, 0.7, 0.8, 0.9\}$
 $\alpha=0.6$ $\alpha=0.7$ $\alpha=0.8$ $\alpha=0.9$ $M$ $e_u$ $r_u$ $e_u$ $r_u$ $e_u$ $r_u$ $e_u$ $r_u$ 50 0.0240 - 0.0417 - 0.0770 - 0.1914 - 100 0.0120 1.00 0.0207 1.01 0.0381 1.01 0.0939 1.02 200 0.0060 1.00 0.0103 1.00 0.0190 1.00 0.0465 1.01 400 0.0030 1.00 0.0051 1.01 0.0095 1.00 0.0232 1.00 800 0.0015 1.00 0.0026 0.97 0.0047 1.01 0.0116 1.00
 $\alpha=0.6$ $\alpha=0.7$ $\alpha=0.8$ $\alpha=0.9$ $M$ $e_u$ $r_u$ $e_u$ $r_u$ $e_u$ $r_u$ $e_u$ $r_u$ 50 0.0240 - 0.0417 - 0.0770 - 0.1914 - 100 0.0120 1.00 0.0207 1.01 0.0381 1.01 0.0939 1.02 200 0.0060 1.00 0.0103 1.00 0.0190 1.00 0.0465 1.01 400 0.0030 1.00 0.0051 1.01 0.0095 1.00 0.0232 1.00 800 0.0015 1.00 0.0026 0.97 0.0047 1.01 0.0116 1.00
Example 2: The values of $J$ and computational time (CT)
 $\alpha=0.7$ $\alpha=0.8$ $\alpha=0.9$ $\alpha=1$ $M$ $J$ CT $J$ CT $J$ CT $J$ CT 50 0.2048 0.08 0.1912 0.08 0.1817 0.08 0.1754 0.08 100 0.2008 0.15 0.1909 0.15 0.1856 0.14 0.1842 0.14 200 0.2019 0.41 0.1945 0.40 0.1920 0.39 0.1940 0.41 400 0.2031 1.70 0.1971 1.67 0.1963 1.71 0.2002 1.61 800 0.2039 17.17 0.1986 17.55 0.1986 16.96 0.2035 17.18
 $\alpha=0.7$ $\alpha=0.8$ $\alpha=0.9$ $\alpha=1$ $M$ $J$ CT $J$ CT $J$ CT $J$ CT 50 0.2048 0.08 0.1912 0.08 0.1817 0.08 0.1754 0.08 100 0.2008 0.15 0.1909 0.15 0.1856 0.14 0.1842 0.14 200 0.2019 0.41 0.1945 0.40 0.1920 0.39 0.1940 0.41 400 0.2031 1.70 0.1971 1.67 0.1963 1.71 0.2002 1.61 800 0.2039 17.17 0.1986 17.55 0.1986 16.96 0.2035 17.18
Example 2: The comparative values of $J$ with $M = 800$
 $J$ FD $\alpha=0.7$ $\alpha=0.8$ $\alpha=0.9$ $\alpha=1$ Caputo 0.2301 0.2073 0.2002 0.2035 CF 0.2039 0.1986 0.1986 0.2035
 $J$ FD $\alpha=0.7$ $\alpha=0.8$ $\alpha=0.9$ $\alpha=1$ Caputo 0.2301 0.2073 0.2002 0.2035 CF 0.2039 0.1986 0.1986 0.2035
Example 3: The values of $J$, rate of convergence and computational time (CT) for $\alpha = \{0.7, 0.8\}$
 $\alpha=0.7$ $\alpha=0.8$ $N$ $J_{N}$ $J_N - J_{N/2}$ $\rho$ CT $J_{N}$ $J_N - J_{N/2}$ $\rho$ CT 50 12.1411 - - 0.63 13.8799 - - 0.64 100 7.9860 4.1551 - 1.32 8.6678 5.2121 - 1.25 200 6.6614 1.3246 1.65 4.31 6.9545 1.7133 1.61 4.33 400 6.1602 0.5012 1.40 17.18 6.3194 0.6351 1.43 16.97 800 5.9455 0.2147 1.22 146.48 6.0524 0.2670 1.25 144.69
 $\alpha=0.7$ $\alpha=0.8$ $N$ $J_{N}$ $J_N - J_{N/2}$ $\rho$ CT $J_{N}$ $J_N - J_{N/2}$ $\rho$ CT 50 12.1411 - - 0.63 13.8799 - - 0.64 100 7.9860 4.1551 - 1.32 8.6678 5.2121 - 1.25 200 6.6614 1.3246 1.65 4.31 6.9545 1.7133 1.61 4.33 400 6.1602 0.5012 1.40 17.18 6.3194 0.6351 1.43 16.97 800 5.9455 0.2147 1.22 146.48 6.0524 0.2670 1.25 144.69
Example 3: The values of $J$, rate of convergence and computational time (CT) for $\alpha = \{0.9, 1\}$
 $\alpha=0.9$ $\alpha=1$ $N$ $J_{N}$ $J_N - J_{N/2}$ $\rho$ CT $J_{N}$ $J_N - J_{N/2}$ $\rho$ CT 50 15.6616 - - 0.73 18.3533 - - 0.69 100 9.9329 5.7287 - 1.39 12.3690 5.9843 - 1.73 200 7.7685 2.1644 1.40 4.30 9.7979 2.5711 1.22 3.81 400 6.9493 0.8192 1.40 18.26 8.7483 1.0496 1.29 18.53 800 6.6071 0.3422 1.26 148.13 8.3018 0.4465 1.23 167.40
 $\alpha=0.9$ $\alpha=1$ $N$ $J_{N}$ $J_N - J_{N/2}$ $\rho$ CT $J_{N}$ $J_N - J_{N/2}$ $\rho$ CT 50 15.6616 - - 0.73 18.3533 - - 0.69 100 9.9329 5.7287 - 1.39 12.3690 5.9843 - 1.73 200 7.7685 2.1644 1.40 4.30 9.7979 2.5711 1.22 3.81 400 6.9493 0.8192 1.40 18.26 8.7483 1.0496 1.29 18.53 800 6.6071 0.3422 1.26 148.13 8.3018 0.4465 1.23 167.40
Example 3: The comparative values of $J$ with $M = 800$
 $J$ FD $\alpha=0.7$ $\alpha=0.8$ $\alpha=0.9$ $\alpha=1$ Caputo 6.6976 6.6329 7.1959 8.3018 CF 5.9455 6.0524 6.6071 8.3018
 $J$ FD $\alpha=0.7$ $\alpha=0.8$ $\alpha=0.9$ $\alpha=1$ Caputo 6.6976 6.6329 7.1959 8.3018 CF 5.9455 6.0524 6.6071 8.3018
 [1] Litan Yan, Xiuwei Yin. Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 615-635. doi: 10.3934/dcdsb.2018199 [2] Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 609-627. doi: 10.3934/dcdss.2020033 [3] Niklas Behringer. Improved error estimates for optimal control of the Stokes problem with pointwise tracking in three dimensions. Mathematical Control and Related Fields, 2021, 11 (2) : 313-328. doi: 10.3934/mcrf.2020038 [4] Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473 [5] Dominik Hafemeyer, Florian Mannel, Ira Neitzel, Boris Vexler. Finite element error estimates for one-dimensional elliptic optimal control by BV-functions. Mathematical Control and Related Fields, 2020, 10 (2) : 333-363. doi: 10.3934/mcrf.2019041 [6] Quyen Tran, Harbir Antil, Hugo Díaz. Optimal control of parameterized stationary Maxwell's system: Reduced basis, convergence analysis, and a posteriori error estimates. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022003 [7] Zhen-Zhen Tao, Bing Sun. Error estimates for spectral approximation of flow optimal control problem with $L^2$-norm control constraint. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022030 [8] Xiaojie Wang. Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 481-497. doi: 10.3934/dcds.2016.36.481 [9] Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control and Related Fields, 2021, 11 (3) : 601-624. doi: 10.3934/mcrf.2021014 [10] Chongyang Liu, Wenjuan Sun, Xiaopeng Yi. Optimal control of a fractional smoking system. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022071 [11] Luca Di Persio, Giacomo Ziglio. Gaussian estimates on networks with applications to optimal control. Networks and Heterogeneous Media, 2011, 6 (2) : 279-296. doi: 10.3934/nhm.2011.6.279 [12] Ahmad Ahmad Ali, Klaus Deckelnick, Michael Hinze. Error analysis for global minima of semilinear optimal control problems. Mathematical Control and Related Fields, 2018, 8 (1) : 195-215. doi: 10.3934/mcrf.2018009 [13] Fulvia Confortola, Elisa Mastrogiacomo. Feedback optimal control for stochastic Volterra equations with completely monotone kernels. Mathematical Control and Related Fields, 2015, 5 (2) : 191-235. doi: 10.3934/mcrf.2015.5.191 [14] Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Optimal control problems of forward-backward stochastic Volterra integral equations. Mathematical Control and Related Fields, 2015, 5 (3) : 613-649. doi: 10.3934/mcrf.2015.5.613 [15] Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161 [16] Thomas Apel, Mariano Mateos, Johannes Pfefferer, Arnd Rösch. Error estimates for Dirichlet control problems in polygonal domains: Quasi-uniform meshes. Mathematical Control and Related Fields, 2018, 8 (1) : 217-245. doi: 10.3934/mcrf.2018010 [17] Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial and Management Optimization, 2016, 12 (1) : 73-82. doi: 10.3934/jimo.2016.12.73 [18] Maria Alessandra Ragusa, Atsushi Tachikawa. Estimates of the derivatives of minimizers of a special class of variational integrals. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1411-1425. doi: 10.3934/dcds.2011.31.1411 [19] Georg Vossen, Stefan Volkwein. Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 465-485. doi: 10.3934/naco.2012.2.465 [20] Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1591-1610. doi: 10.3934/dcdsb.2021102

2021 Impact Factor: 1.865