• Previous Article
    Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions
  • DCDS-S Home
  • This Issue
  • Next Article
    New approximate solutions to the nonlinear Klein-Gordon equations using perturbation iteration techniques
March  2020, 13(3): 519-537. doi: 10.3934/dcdss.2020029

Analysis of a Lymphatic filariasis-schistosomiasis coinfection with public health dynamics: Model obtained through Mittag-Leffler function

1. 

Department of Mathematics Education Kumasi Campus, University of Education Winneba, Ghana, Kumasi Ashanti Region, Box 1277, Ghana

2. 

Department of Mathematics Education, University of Education Winneba, Winneba, Central region, Box 25, Ghana

* Corresponding author: ebbonya@gmail.com

Received  April 2018 Revised  June 2018 Published  March 2019

In this paper, Lymphatic filariasis-schistosomiasis coinfected model is studied within the context of fractional derivative order based on Mittag-Leffler function of ABC in the Caputo sense. The existence and uniqueness of system model solution is derived by employing a well- known Banach fixed point theorem. The numerical solution based on the Mittag-Leffler function suggests that the dynamics of the coinfected model is well explored using fractional derivative order because of non-singularity.

Citation: Ebenezer Bonyah, Samuel Kwesi Asiedu. Analysis of a Lymphatic filariasis-schistosomiasis coinfection with public health dynamics: Model obtained through Mittag-Leffler function. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 519-537. doi: 10.3934/dcdss.2020029
References:
[1]

A. Atangana and I. Koca, On the new fractional derivative and application to nonlinear Baggs and Freedman model, J. Nonlin. Sci. Appl., 9 (2016), 2467-2480.  doi: 10.22436/jnsa.009.05.46.  Google Scholar

[2]

A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 89 (2016), 763-769.   Google Scholar

[3]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fract., 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.  Google Scholar

[4]

A. Atangana and J. F. Gomez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus., 133 (2018), 166.  doi: 10.1140/epjp/i2018-12021-3.  Google Scholar

[5]

H. M. BaskonusT. MekkaouiH. Hammouch and H. Bulut, Active control of a Chaotic fractional order economic system, Abstr. Appl. Anal., 17 (2015), 5771-5783.  doi: 10.3390/e17085771.  Google Scholar

[6]

A. H. BhrawyS. S. Ezz-EldienE. H. AbdelkawyM. A. Doha and D. Baleanu, Solving fractional optimal control problems within a Chebyshev- Legendre operational technique, Int. J. Cont., 90 (2017), 1230-1244.  doi: 10.1080/00207179.2016.1278267.  Google Scholar

[7]

E. BonyahK. O. OkosunO. O. Okosun and L. Ossei, Mathematical modeling of Lymphatic filariasis-schistosomiasis co-infection dynamics:Insight through public education, Int. Jour. Eco. Devel., 33 (2017).   Google Scholar

[8]

H. Bulut, H. M. Baskonus and F. B. M. Belgacem, The analytical solutions of some fractional ordinary differential equations by Sumudu transform method, Abstr. Appl. Anal., 2013 (2013), Art. ID 203875, 6 pp. doi: 10.1155/2013/203875.  Google Scholar

[9]

K. M. Owolabi, Numerical solution of diffusive HBV model in a fractional medium, Spr. Plus., 5 (2016), 1643.  doi: 10.1186/s40064-016-3295-x.  Google Scholar

[10]

K. M. Owolabi and A. Atangana, Numerical approximation of nonlinear fractional parabolic differential equations with Caputo abrizio derivative in Riemann Liouville sense, Spr. Plus., 99 (2017), 171-179.  doi: 10.1016/j.chaos.2017.04.008.  Google Scholar

[11]

K. M. Owolabi, Mathematical modelling and analysis of two-component system with Caputo fractional derivative order, Spr. Plus., 103 (2017), 544-554.  doi: 10.1016/j.chaos.2017.07.013.  Google Scholar

[12]

N. Ozalp and I. Koca, A fractional order nonlinear dynamical model of interpersonal relationships, Adv. Diff. Equ., 189 (2012), 1-7.  doi: 10.1186/1687-1847-2012-189.  Google Scholar

[13]

A. Paparao and K. L. Narayan, Solving fractional optimal control problems within a Chebyshev- Legendre operational technique, Int. J. Cont., 32 (2017), 75-86.   Google Scholar

[14]

A. V. PaparaoV. S. Kalesha and A. Paparao, Dynamics of directly transmitted viral micro parasite model, Int. J. Ecol. Devel., 32 (2017), 88-97.   Google Scholar

[15]

C. M. A. Pinto and A. R. M. Carvalho, New findings on the dynamics of HIV and TB coinfection models, Appl. math. comp., 242 (2014), 36-46.  doi: 10.1016/j.amc.2014.05.061.  Google Scholar

[16]

J. SinghD. KumarM. A. Qurashi and D. Baleanu, A new fractional model for giving up smoking dynamics, Adv. Diff. Equ., 88 (2017), 1-16.  doi: 10.1186/s13662-017-1139-9.  Google Scholar

[17]

B. S. TAlkahtaniI. Koca and A. Atangana, Analysis of a new model of H1N1 spread: Model obtained via Mittag-Leffler function, Adv. Mech. Eng., 9 (2017), 1-8.   Google Scholar

show all references

References:
[1]

A. Atangana and I. Koca, On the new fractional derivative and application to nonlinear Baggs and Freedman model, J. Nonlin. Sci. Appl., 9 (2016), 2467-2480.  doi: 10.22436/jnsa.009.05.46.  Google Scholar

[2]

A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 89 (2016), 763-769.   Google Scholar

[3]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fract., 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.  Google Scholar

[4]

A. Atangana and J. F. Gomez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus., 133 (2018), 166.  doi: 10.1140/epjp/i2018-12021-3.  Google Scholar

[5]

H. M. BaskonusT. MekkaouiH. Hammouch and H. Bulut, Active control of a Chaotic fractional order economic system, Abstr. Appl. Anal., 17 (2015), 5771-5783.  doi: 10.3390/e17085771.  Google Scholar

[6]

A. H. BhrawyS. S. Ezz-EldienE. H. AbdelkawyM. A. Doha and D. Baleanu, Solving fractional optimal control problems within a Chebyshev- Legendre operational technique, Int. J. Cont., 90 (2017), 1230-1244.  doi: 10.1080/00207179.2016.1278267.  Google Scholar

[7]

E. BonyahK. O. OkosunO. O. Okosun and L. Ossei, Mathematical modeling of Lymphatic filariasis-schistosomiasis co-infection dynamics:Insight through public education, Int. Jour. Eco. Devel., 33 (2017).   Google Scholar

[8]

H. Bulut, H. M. Baskonus and F. B. M. Belgacem, The analytical solutions of some fractional ordinary differential equations by Sumudu transform method, Abstr. Appl. Anal., 2013 (2013), Art. ID 203875, 6 pp. doi: 10.1155/2013/203875.  Google Scholar

[9]

K. M. Owolabi, Numerical solution of diffusive HBV model in a fractional medium, Spr. Plus., 5 (2016), 1643.  doi: 10.1186/s40064-016-3295-x.  Google Scholar

[10]

K. M. Owolabi and A. Atangana, Numerical approximation of nonlinear fractional parabolic differential equations with Caputo abrizio derivative in Riemann Liouville sense, Spr. Plus., 99 (2017), 171-179.  doi: 10.1016/j.chaos.2017.04.008.  Google Scholar

[11]

K. M. Owolabi, Mathematical modelling and analysis of two-component system with Caputo fractional derivative order, Spr. Plus., 103 (2017), 544-554.  doi: 10.1016/j.chaos.2017.07.013.  Google Scholar

[12]

N. Ozalp and I. Koca, A fractional order nonlinear dynamical model of interpersonal relationships, Adv. Diff. Equ., 189 (2012), 1-7.  doi: 10.1186/1687-1847-2012-189.  Google Scholar

[13]

A. Paparao and K. L. Narayan, Solving fractional optimal control problems within a Chebyshev- Legendre operational technique, Int. J. Cont., 32 (2017), 75-86.   Google Scholar

[14]

A. V. PaparaoV. S. Kalesha and A. Paparao, Dynamics of directly transmitted viral micro parasite model, Int. J. Ecol. Devel., 32 (2017), 88-97.   Google Scholar

[15]

C. M. A. Pinto and A. R. M. Carvalho, New findings on the dynamics of HIV and TB coinfection models, Appl. math. comp., 242 (2014), 36-46.  doi: 10.1016/j.amc.2014.05.061.  Google Scholar

[16]

J. SinghD. KumarM. A. Qurashi and D. Baleanu, A new fractional model for giving up smoking dynamics, Adv. Diff. Equ., 88 (2017), 1-16.  doi: 10.1186/s13662-017-1139-9.  Google Scholar

[17]

B. S. TAlkahtaniI. Koca and A. Atangana, Analysis of a new model of H1N1 spread: Model obtained via Mittag-Leffler function, Adv. Mech. Eng., 9 (2017), 1-8.   Google Scholar

Figure 1.  Approximate solution for $ \alpha = 0.3 $
Figure 2.  Approximate solution for $\alpha = 0.5$
Figure 3.  Approximate solution for $\alpha = 0.65$
Figure 4.  Approximate solution for $\alpha = 0.75$
Figure 5.  Approximate solution for $ \alpha = 0.95 $
[1]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[2]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[3]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[6]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[7]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[8]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[9]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[10]

Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (127)
  • HTML views (659)
  • Cited by (0)

Other articles
by authors

[Back to Top]