
-
Previous Article
Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions
- DCDS-S Home
- This Issue
-
Next Article
New approximate solutions to the nonlinear Klein-Gordon equations using perturbation iteration techniques
Analysis of a Lymphatic filariasis-schistosomiasis coinfection with public health dynamics: Model obtained through Mittag-Leffler function
1. | Department of Mathematics Education Kumasi Campus, University of Education Winneba, Ghana, Kumasi Ashanti Region, Box 1277, Ghana |
2. | Department of Mathematics Education, University of Education Winneba, Winneba, Central region, Box 25, Ghana |
In this paper, Lymphatic filariasis-schistosomiasis coinfected model is studied within the context of fractional derivative order based on Mittag-Leffler function of ABC in the Caputo sense. The existence and uniqueness of system model solution is derived by employing a well- known Banach fixed point theorem. The numerical solution based on the Mittag-Leffler function suggests that the dynamics of the coinfected model is well explored using fractional derivative order because of non-singularity.
References:
[1] |
A. Atangana and I. Koca,
On the new fractional derivative and application to nonlinear Baggs and Freedman model, J. Nonlin. Sci. Appl., 9 (2016), 2467-2480.
doi: 10.22436/jnsa.009.05.46. |
[2] |
A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 89 (2016), 763-769. Google Scholar |
[3] |
A. Atangana and I. Koca,
Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fract., 89 (2016), 447-454.
doi: 10.1016/j.chaos.2016.02.012. |
[4] |
A. Atangana and J. F. Gomez-Aguilar,
Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus., 133 (2018), 166.
doi: 10.1140/epjp/i2018-12021-3. |
[5] |
H. M. Baskonus, T. Mekkaoui, H. Hammouch and H. Bulut,
Active control of a Chaotic fractional order economic system, Abstr. Appl. Anal., 17 (2015), 5771-5783.
doi: 10.3390/e17085771. |
[6] |
A. H. Bhrawy, S. S. Ezz-Eldien, E. H. Abdelkawy, M. A. Doha and D. Baleanu,
Solving fractional optimal control problems within a Chebyshev- Legendre operational technique, Int. J. Cont., 90 (2017), 1230-1244.
doi: 10.1080/00207179.2016.1278267. |
[7] |
E. Bonyah, K. O. Okosun, O. O. Okosun and L. Ossei, Mathematical modeling of Lymphatic filariasis-schistosomiasis co-infection dynamics:Insight through public education, Int. Jour. Eco. Devel., 33 (2017). Google Scholar |
[8] |
H. Bulut, H. M. Baskonus and F. B. M. Belgacem, The analytical solutions of some fractional ordinary differential equations by Sumudu transform method, Abstr. Appl. Anal., 2013 (2013), Art. ID 203875, 6 pp.
doi: 10.1155/2013/203875. |
[9] |
K. M. Owolabi,
Numerical solution of diffusive HBV model in a fractional medium, Spr. Plus., 5 (2016), 1643.
doi: 10.1186/s40064-016-3295-x. |
[10] |
K. M. Owolabi and A. Atangana,
Numerical approximation of nonlinear fractional parabolic differential equations with Caputo abrizio derivative in Riemann Liouville sense, Spr. Plus., 99 (2017), 171-179.
doi: 10.1016/j.chaos.2017.04.008. |
[11] |
K. M. Owolabi,
Mathematical modelling and analysis of two-component system with Caputo fractional derivative order, Spr. Plus., 103 (2017), 544-554.
doi: 10.1016/j.chaos.2017.07.013. |
[12] |
N. Ozalp and I. Koca,
A fractional order nonlinear dynamical model of interpersonal relationships, Adv. Diff. Equ., 189 (2012), 1-7.
doi: 10.1186/1687-1847-2012-189. |
[13] |
A. Paparao and K. L. Narayan, Solving fractional optimal control problems within a Chebyshev- Legendre operational technique, Int. J. Cont., 32 (2017), 75-86. Google Scholar |
[14] |
A. V. Paparao, V. S. Kalesha and A. Paparao, Dynamics of directly transmitted viral micro parasite model, Int. J. Ecol. Devel., 32 (2017), 88-97. Google Scholar |
[15] |
C. M. A. Pinto and A. R. M. Carvalho,
New findings on the dynamics of HIV and TB coinfection models, Appl. math. comp., 242 (2014), 36-46.
doi: 10.1016/j.amc.2014.05.061. |
[16] |
J. Singh, D. Kumar, M. A. Qurashi and D. Baleanu,
A new fractional model for giving up smoking dynamics, Adv. Diff. Equ., 88 (2017), 1-16.
doi: 10.1186/s13662-017-1139-9. |
[17] |
B. S. TAlkahtani, I. Koca and A. Atangana, Analysis of a new model of H1N1 spread: Model obtained via Mittag-Leffler function, Adv. Mech. Eng., 9 (2017), 1-8. Google Scholar |
show all references
References:
[1] |
A. Atangana and I. Koca,
On the new fractional derivative and application to nonlinear Baggs and Freedman model, J. Nonlin. Sci. Appl., 9 (2016), 2467-2480.
doi: 10.22436/jnsa.009.05.46. |
[2] |
A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 89 (2016), 763-769. Google Scholar |
[3] |
A. Atangana and I. Koca,
Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fract., 89 (2016), 447-454.
doi: 10.1016/j.chaos.2016.02.012. |
[4] |
A. Atangana and J. F. Gomez-Aguilar,
Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus., 133 (2018), 166.
doi: 10.1140/epjp/i2018-12021-3. |
[5] |
H. M. Baskonus, T. Mekkaoui, H. Hammouch and H. Bulut,
Active control of a Chaotic fractional order economic system, Abstr. Appl. Anal., 17 (2015), 5771-5783.
doi: 10.3390/e17085771. |
[6] |
A. H. Bhrawy, S. S. Ezz-Eldien, E. H. Abdelkawy, M. A. Doha and D. Baleanu,
Solving fractional optimal control problems within a Chebyshev- Legendre operational technique, Int. J. Cont., 90 (2017), 1230-1244.
doi: 10.1080/00207179.2016.1278267. |
[7] |
E. Bonyah, K. O. Okosun, O. O. Okosun and L. Ossei, Mathematical modeling of Lymphatic filariasis-schistosomiasis co-infection dynamics:Insight through public education, Int. Jour. Eco. Devel., 33 (2017). Google Scholar |
[8] |
H. Bulut, H. M. Baskonus and F. B. M. Belgacem, The analytical solutions of some fractional ordinary differential equations by Sumudu transform method, Abstr. Appl. Anal., 2013 (2013), Art. ID 203875, 6 pp.
doi: 10.1155/2013/203875. |
[9] |
K. M. Owolabi,
Numerical solution of diffusive HBV model in a fractional medium, Spr. Plus., 5 (2016), 1643.
doi: 10.1186/s40064-016-3295-x. |
[10] |
K. M. Owolabi and A. Atangana,
Numerical approximation of nonlinear fractional parabolic differential equations with Caputo abrizio derivative in Riemann Liouville sense, Spr. Plus., 99 (2017), 171-179.
doi: 10.1016/j.chaos.2017.04.008. |
[11] |
K. M. Owolabi,
Mathematical modelling and analysis of two-component system with Caputo fractional derivative order, Spr. Plus., 103 (2017), 544-554.
doi: 10.1016/j.chaos.2017.07.013. |
[12] |
N. Ozalp and I. Koca,
A fractional order nonlinear dynamical model of interpersonal relationships, Adv. Diff. Equ., 189 (2012), 1-7.
doi: 10.1186/1687-1847-2012-189. |
[13] |
A. Paparao and K. L. Narayan, Solving fractional optimal control problems within a Chebyshev- Legendre operational technique, Int. J. Cont., 32 (2017), 75-86. Google Scholar |
[14] |
A. V. Paparao, V. S. Kalesha and A. Paparao, Dynamics of directly transmitted viral micro parasite model, Int. J. Ecol. Devel., 32 (2017), 88-97. Google Scholar |
[15] |
C. M. A. Pinto and A. R. M. Carvalho,
New findings on the dynamics of HIV and TB coinfection models, Appl. math. comp., 242 (2014), 36-46.
doi: 10.1016/j.amc.2014.05.061. |
[16] |
J. Singh, D. Kumar, M. A. Qurashi and D. Baleanu,
A new fractional model for giving up smoking dynamics, Adv. Diff. Equ., 88 (2017), 1-16.
doi: 10.1186/s13662-017-1139-9. |
[17] |
B. S. TAlkahtani, I. Koca and A. Atangana, Analysis of a new model of H1N1 spread: Model obtained via Mittag-Leffler function, Adv. Mech. Eng., 9 (2017), 1-8. Google Scholar |





[1] |
Ndolane Sene. Mittag-Leffler input stability of fractional differential equations and its applications. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 867-880. doi: 10.3934/dcdss.2020050 |
[2] |
Francesco Mainardi. On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2267-2278. doi: 10.3934/dcdsb.2014.19.2267 |
[3] |
Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 995-1006. doi: 10.3934/dcdss.2020058 |
[4] |
Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 609-627. doi: 10.3934/dcdss.2020033 |
[5] |
Raziye Mert, Thabet Abdeljawad, Allan Peterson. A Sturm-Liouville approach for continuous and discrete Mittag-Leffler kernel fractional operators. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020171 |
[6] |
Antonio Coronel-Escamilla, José Francisco Gómez-Aguilar. A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 561-574. doi: 10.3934/dcdss.2020031 |
[7] |
Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692 |
[8] |
Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775 |
[9] |
Genady Ya. Grabarnik, Misha Guysinsky. Livšic theorem for banach rings. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4379-4390. doi: 10.3934/dcds.2017187 |
[10] |
Hari Bercovici, Viorel Niţică. A Banach algebra version of the Livsic theorem. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 523-534. doi: 10.3934/dcds.1998.4.523 |
[11] |
Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297 |
[12] |
Cecilia González-Tokman, Anthony Quas. A concise proof of the multiplicative ergodic theorem on Banach spaces. Journal of Modern Dynamics, 2015, 9: 237-255. doi: 10.3934/jmd.2015.9.237 |
[13] |
Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017 |
[14] |
Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709 |
[15] |
Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979 |
[16] |
Antonio Garcia. Transition tori near an elliptic-fixed point. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 381-392. doi: 10.3934/dcds.2000.6.381 |
[17] |
Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271 |
[18] |
Alex Blumenthal. A volume-based approach to the multiplicative ergodic theorem on Banach spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2377-2403. doi: 10.3934/dcds.2016.36.2377 |
[19] |
Teck-Cheong Lim. On the largest common fixed point of a commuting family of isotone maps. Conference Publications, 2005, 2005 (Special) : 621-623. doi: 10.3934/proc.2005.2005.621 |
[20] |
Mircea Sofonea, Cezar Avramescu, Andaluzia Matei. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Communications on Pure & Applied Analysis, 2008, 7 (3) : 645-658. doi: 10.3934/cpaa.2008.7.645 |
2018 Impact Factor: 0.545
Tools
Article outline
Figures and Tables
[Back to Top]