June  2020, 13(3): 683-693. doi: 10.3934/dcdss.2020037

Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary

1. 

Department of Mathematics and statistics, The University of Lahore, Lahore, Pakistan

2. 

Department of Mathematics, Govt. College University, Lahore, Pakistan

3. 

Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, Morocco

4. 

Department of Mathematics, University Of Management and Technology, Lahore, Pakistan

* Corresponding author: Zakia Hammouch, email: hammouch.zakia@gmail.com

Received  May 2018 Revised  November 2018 Published  March 2019

Fund Project: Prof. Zakia Hammouch was supported by the Research Project UMI2016 financed by Moulay Ismail University allowed to team E3MI

The objective of this paper is to study the unsteady rotational flow of some non Newtonian fluids with Caputo fractional derivative through an infinite circular cylinder by means of the finite Hankel and Laplace transform. The novelty of the work is that motion is produced by applying tangential force not a specific but general function of time on the boundary. Initially the cylinder is at rest and after time $ t_{o} = 0^{+} $ it begins to rotate about its axis with an angular velocity $ \tau_{o} g(t) $. The obtained solutions of velocity field and shear stress have been presented under series form in terms of generalized $ G $-function, satisfying all imposed initial and boundary conditions. The corresponding solutions can be easily particularized to give similar solutions from existing literature for Oldroyd-B fluids, Maxwell fluids, Second grade fluids and Newtonian fluids with/without fractional derivatives performing similar motions.

Citation: Muhammad Mansha Ghalib, Azhar Ali Zafar, Zakia Hammouch, Muhammad Bilal Riaz, Khurram Shabbir. Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 683-693. doi: 10.3934/dcdss.2020037
References:
[1]

A. Atangana and J. F. Gomez Aguilar, Decolonisation of fractional calculus rules Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018), 166. doi: 10.1140/epjp/i2018-12021-3.  Google Scholar

[2]

A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A : Statistical Mechanics and its Applications, 505 (2018), 688-706.  doi: 10.1016/j.physa.2018.03.056.  Google Scholar

[3]

H. A. AttiaM. A. Abdeen and W. A. El-Meged, Transient generalized Couette flow of viscoelastic fluid through a porous medium with variable viscosity and pressure gradient, Arab. J. Sci. Eng., 38 (2013), 3451-3458.  doi: 10.1007/s13369-013-0668-0.  Google Scholar

[4]

I. Burdujan, The flow of a particular class of Oldroyd-B fluids, Ann. Acad. Romanian Sci. Ser. Math. Appl., 3 (2011), 23-45.   Google Scholar

[5]

A. Coronel EscamillaF. TorresJ. F. Gomez-AguilarF. Escobar-Jimenez and G. V. Guerrero-Ramirez, On the trajectory tracking control for an SCARA robot manipulator in a fractional model driven by induction motors with PSO tuning, Multibody System Dynamics, 43 (2018), 257-277.  doi: 10.1007/s11044-017-9586-3.  Google Scholar

[6]

A. C. Escamilla, J. F. Gomez Aguilar, D. Baleanu, T. Cordova-Fraga, R.Jimenez, V. Peregrino and M. M. Al Qurashi, Bateman Feshbach Tikochinsky and Caldirola Kanai Oscillators with New Fractional Differentiation, Entropy, 19 (2017), 55. Google Scholar

[7]

C. Escamilla et al., A numerical solution for a variable-order reaction diffusion model by using fractional derivatives with non-local and non-singular kernel, Physica A: Statistical Mechanics and its Applications, 491 (2018), 406-424. doi: 10.1016/j.physa.2017.09.014.  Google Scholar

[8]

C. FetecauMehwish RanaNiat Nigar and C. Fetecau, First exact solutions for flows of rate type fluids in a circular duct that applies a constant couple to the fluid, Z. Naturforsch, 69 (2014), 232-238.  doi: 10.5560/zna.2014-0022.  Google Scholar

[9]

C. FetecauQ. RubbabS. Akhter and C. Fetecau, New methods to provide exact solutions for some unidirectional motions of rate type fluids, Thermal Science, 20 (2016), 7-20.  doi: 10.2298/TSCI130225130F.  Google Scholar

[10]

M. A. Fontelos and A. Friedman, Stationary non-Newtonian fluid flows in channellike and pipe-like domains, Arch. Rational Mech. Anal., 151 (2000), 1-43.  doi: 10.1007/s002050050192.  Google Scholar

[11]

B. J. GireeshaK. R. Madhura and C. S. Bagewadi, Flow of an unsteady dusty fluid through porous media in a uniform pipe with sector of a circle as cross-section, Int. J. Pure Appl. Math., 27 (2012), 20-38.   Google Scholar

[12]

J. F. Gomez Aguilar, T. Cordova-Fraga, J. Torres-Jimenez, R. F. Escobar-Jimenez, V. H. Olivares-Peregrino and G. V. Guerrero-Ramrez, Nonlocal transport processes and the fractional cattaneo-vernotte equation, Mathematical Problems in Engineering, 2016 (2016), Art. ID 7845874, 15 pp. doi: 10.1155/2016/7845874.  Google Scholar

[13]

J. F. Gomez Aguilar et al., Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Advances in Difference Equations, 2017 (2017), Paper No. 68, 18 pp. doi: 10.1186/s13662-017-1120-7.  Google Scholar

[14]

J. F. Gomez Aguilar, Chaos in a nonlinear Bloch system with Atangana Baleanu fractional derivatives, Numerical Methods for Partial Differential Equations, 34 (2018), 1716-1738.  doi: 10.1002/num.22219.  Google Scholar

[15]

C. Guillope and J. C. Saut, Global existence and one-dimensional non-linear stability of shearing motions of viscoelastic fluids of Oldroyd type, RAIRO Model, Math. Anal., 24 (1990), 369-401.  doi: 10.1051/m2an/1990240303691.  Google Scholar

[16]

Z. Hammouch and T. Mekkaoui, Chaos synchronization of a fractional nonautonomous system, Nonautonomous Dynamical Systems, 1 (2014), 61-71.  doi: 10.2478/msds-2014-0001.  Google Scholar

[17]

Z. Hammouch and T. Mekkaoui, Control of a new chaotic fractional-order system using Mittag-Leffler stability, Nonlinear Studies, 22 (2015), 565-577.   Google Scholar

[18]

Z. Hammouch and T. Mekkaoui, Circuit design and simulation for the fractional-order chaotic behavior in a new dynamical system., Complex and Intelligent Systems, (2015), 1-10. Google Scholar

[19]

T. HayatA. M. Siddiqui and S. Asghar, Some simple flows of an Oldroyd-B fluid, Int. J. Eng. Sci., 39 (2001), 135-147.   Google Scholar

[20]

T. HayatM. Khan and M. Ayub, Exact solutions of flow problems of an Oldroyd-B fluid, Appl. Math. Comput., 151 (2004), 105-119.  doi: 10.1016/S0096-3003(03)00326-6.  Google Scholar

[21]

M. JamilC. Fetecau and M. Rana, Some exact solutions for Oldroyd-B fluid due to time dependent prescribed shear stress, J. Theor. Appl. Mech., 50 (2012), 549-562.   Google Scholar

[22]

F. JaradT. Abdeljawad and Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana Baleanu fractional derivative, Chaos, Solitons and Fractals, 117 (2018), 16-20.  doi: 10.1016/j.chaos.2018.10.006.  Google Scholar

[23]

A. KaramiT. YousefiS. Mohebbi and C. Aghanajafi, Prediction of free convection from vertical and inclined rows of horizontal isothermal cylinders using ANFIS, Arab.J. Sci. Eng., 39 (2014), 4201-4209.  doi: 10.1007/s13369-014-1094-7.  Google Scholar

[24]

Y. LiuF. Zong and J. Dai, Unsteady helical flow of a generalized Oldroyd-B fluid with fractional derivative, Int. J. Math. Trends Technology, 5 (2014), 66-76.   Google Scholar

[25]

C. F. Lorenzo and T. T. Hartley, Generalized Functions for fractional calculus, Critical Reviews in Biomedical Engineering, 36 (2008), 39-55.  doi: 10.1615/CritRevBiomedEng.v36.i1.40.  Google Scholar

[26]

V. Mathur and K. Khandelwal, Exact solution for the flow of Oldroyd-B fluid between coaxial cylinders, Int. J. Eng. Res. Technol. (IJERT), 3 (2014), 949-954.   Google Scholar

[27] N. W. McLachlan, Bessel Functions for Engineers, Oxford Univeristy Press, London, 1955.   Google Scholar
[28]

G. Nagaraju and J. V. Ramana Murthy, MHD flow of longitudinal and torsional oscillations of a circular cylinder with suction in a couple stress fluid, Int. J. Appl. Mech. Eng., 18 (2013), 1099-1114.  doi: 10.2478/ijame-2013-0069.  Google Scholar

[29]

J. G. Oldroyd, On the formulation of rheological equations of state, Proc. R. Soc. Lond. A., 200 (1950), 523-541.  doi: 10.1098/rspa.1950.0035.  Google Scholar

[30]

J. G. Oldroyd, The motion of an elastico-viscous liquid contained between coaxial cylinders, Q. J. Mech. Appl. Math., 4 (1951), 271-282.  doi: 10.1093/qjmam/4.3.271.  Google Scholar

[31] I. Podlubny, Fractional Differential Equations, Academic Press, San Diege, 1999.   Google Scholar
[32]

K. R. Rajagopal and P. K. Bhatnagar, Exact solutions for some simple flows of an Oldroyd-B fluid, Acta Mech., 113 (1995), 233-239.  doi: 10.1007/BF01212645.  Google Scholar

[33]

A. RaufA. A. Zafar and I. A. Mirza, Unsteady rotational flows of an Oldroyd-B fluid due to tension on the boundary, Alexandria Eng J, 54 (2015), 973-979.  doi: 10.1016/j.aej.2015.09.001.  Google Scholar

[34]

N. Raza, Unsteady rotational flow of a second grade fluid with non-integer caputo time fractional derivative, Punjab University Journal of Mathematics, 49 (2017), 15-25.   Google Scholar

[35]

N. RazaM. AbdullahA. Rashid ButtA. U. Awan and E. U. Haque, Flow of a second grade fluid with fractional derivatives due to a quadratic time dependent shear stress, Alexandria Eng. J., 57 (2018), 1963-1969.  doi: 10.1016/j.aej.2017.04.004.  Google Scholar

[36]

M. Renardy, Inflow boundary condition forsteady flow of viscoelastic fluids with differential constitutive laws, Rocky Mount. J. Math., 18 (1998), 445-453.  doi: 10.1216/RMJ-1988-18-2-445.  Google Scholar

[37]

M. Renardy, An alternative approach to inflow boundary conditions for Maxwell fluids in three space dimensions, J. Non-Newtonian Fluid Mech., 36 (1990), 419-425.  doi: 10.1016/0377-0257(90)85022-Q.  Google Scholar

[38]

M. B. RiazM. I. Asjad and K. Shabbir, Analytic solutions of fractional Oldroyd-B fluid in a circular duct that applies a constant couple, Alexandria Eng. J., 55 (2016), 3267-3275.   Google Scholar

[39]

H. RudolfY. Luchko and Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Fract. Calc. Appl. Anal, 12 (2009), 299-318.   Google Scholar

[40]

J. SinghD. KumarZ. Hammouch and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Applied Mathematics and Computation, 316 (2018), 504-515.  doi: 10.1016/j.amc.2017.08.048.  Google Scholar

[41]

B. Singh and N. K. Varshney, Effect of MHD visco-elastic fluid (Oldroyd) and porous medium through a circular cylinder bounded by a permeable bed, Int. J. Math. Arch., 3 (2012), 2912-2917.   Google Scholar

[42]

R. Talhouk, Unsteady flows of viscoelastic fluids with inflow and outflow boundary conditions, Appl. Math. Lett., 9 (1996), 93-98.  doi: 10.1016/0893-9659(96)00080-8.  Google Scholar

[43]

D. Vieru and I. Siddique, Axial flow of several non-Newtonian fluids through a circular cylinder, Int. J. Appl.Mech., 2 (2010), 543-556.  doi: 10.1142/S1758825110000640.  Google Scholar

[44]

N. D. Waters and M. J. King, Unsteady flow of an elastico-viscous liquid, Rheol. Acta., 93 (1970), 345-355.   Google Scholar

[45]

A. A. Zafar, N. A. Shah and Niat Nigar, On some rotational flows of non-integer order rate type fluids with shear stress on the boundary, Ain Shams Eng J, 9 (2018), 1865-1876, https://www.sciencedirect.com/science/article/pii/S2090447917300138 doi: 10.1016/j.asej.2016.08.018.  Google Scholar

[46]

A. A. ZafarM. B. Riaz and M. I. Asjad, Unsteady Rotational Flow of fractional Maxwell Fluid in a cylinder subject to shear stress on the boundary, Punjab University Journal of Mathematics, 50 (2018), 21-32.   Google Scholar

show all references

References:
[1]

A. Atangana and J. F. Gomez Aguilar, Decolonisation of fractional calculus rules Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018), 166. doi: 10.1140/epjp/i2018-12021-3.  Google Scholar

[2]

A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A : Statistical Mechanics and its Applications, 505 (2018), 688-706.  doi: 10.1016/j.physa.2018.03.056.  Google Scholar

[3]

H. A. AttiaM. A. Abdeen and W. A. El-Meged, Transient generalized Couette flow of viscoelastic fluid through a porous medium with variable viscosity and pressure gradient, Arab. J. Sci. Eng., 38 (2013), 3451-3458.  doi: 10.1007/s13369-013-0668-0.  Google Scholar

[4]

I. Burdujan, The flow of a particular class of Oldroyd-B fluids, Ann. Acad. Romanian Sci. Ser. Math. Appl., 3 (2011), 23-45.   Google Scholar

[5]

A. Coronel EscamillaF. TorresJ. F. Gomez-AguilarF. Escobar-Jimenez and G. V. Guerrero-Ramirez, On the trajectory tracking control for an SCARA robot manipulator in a fractional model driven by induction motors with PSO tuning, Multibody System Dynamics, 43 (2018), 257-277.  doi: 10.1007/s11044-017-9586-3.  Google Scholar

[6]

A. C. Escamilla, J. F. Gomez Aguilar, D. Baleanu, T. Cordova-Fraga, R.Jimenez, V. Peregrino and M. M. Al Qurashi, Bateman Feshbach Tikochinsky and Caldirola Kanai Oscillators with New Fractional Differentiation, Entropy, 19 (2017), 55. Google Scholar

[7]

C. Escamilla et al., A numerical solution for a variable-order reaction diffusion model by using fractional derivatives with non-local and non-singular kernel, Physica A: Statistical Mechanics and its Applications, 491 (2018), 406-424. doi: 10.1016/j.physa.2017.09.014.  Google Scholar

[8]

C. FetecauMehwish RanaNiat Nigar and C. Fetecau, First exact solutions for flows of rate type fluids in a circular duct that applies a constant couple to the fluid, Z. Naturforsch, 69 (2014), 232-238.  doi: 10.5560/zna.2014-0022.  Google Scholar

[9]

C. FetecauQ. RubbabS. Akhter and C. Fetecau, New methods to provide exact solutions for some unidirectional motions of rate type fluids, Thermal Science, 20 (2016), 7-20.  doi: 10.2298/TSCI130225130F.  Google Scholar

[10]

M. A. Fontelos and A. Friedman, Stationary non-Newtonian fluid flows in channellike and pipe-like domains, Arch. Rational Mech. Anal., 151 (2000), 1-43.  doi: 10.1007/s002050050192.  Google Scholar

[11]

B. J. GireeshaK. R. Madhura and C. S. Bagewadi, Flow of an unsteady dusty fluid through porous media in a uniform pipe with sector of a circle as cross-section, Int. J. Pure Appl. Math., 27 (2012), 20-38.   Google Scholar

[12]

J. F. Gomez Aguilar, T. Cordova-Fraga, J. Torres-Jimenez, R. F. Escobar-Jimenez, V. H. Olivares-Peregrino and G. V. Guerrero-Ramrez, Nonlocal transport processes and the fractional cattaneo-vernotte equation, Mathematical Problems in Engineering, 2016 (2016), Art. ID 7845874, 15 pp. doi: 10.1155/2016/7845874.  Google Scholar

[13]

J. F. Gomez Aguilar et al., Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Advances in Difference Equations, 2017 (2017), Paper No. 68, 18 pp. doi: 10.1186/s13662-017-1120-7.  Google Scholar

[14]

J. F. Gomez Aguilar, Chaos in a nonlinear Bloch system with Atangana Baleanu fractional derivatives, Numerical Methods for Partial Differential Equations, 34 (2018), 1716-1738.  doi: 10.1002/num.22219.  Google Scholar

[15]

C. Guillope and J. C. Saut, Global existence and one-dimensional non-linear stability of shearing motions of viscoelastic fluids of Oldroyd type, RAIRO Model, Math. Anal., 24 (1990), 369-401.  doi: 10.1051/m2an/1990240303691.  Google Scholar

[16]

Z. Hammouch and T. Mekkaoui, Chaos synchronization of a fractional nonautonomous system, Nonautonomous Dynamical Systems, 1 (2014), 61-71.  doi: 10.2478/msds-2014-0001.  Google Scholar

[17]

Z. Hammouch and T. Mekkaoui, Control of a new chaotic fractional-order system using Mittag-Leffler stability, Nonlinear Studies, 22 (2015), 565-577.   Google Scholar

[18]

Z. Hammouch and T. Mekkaoui, Circuit design and simulation for the fractional-order chaotic behavior in a new dynamical system., Complex and Intelligent Systems, (2015), 1-10. Google Scholar

[19]

T. HayatA. M. Siddiqui and S. Asghar, Some simple flows of an Oldroyd-B fluid, Int. J. Eng. Sci., 39 (2001), 135-147.   Google Scholar

[20]

T. HayatM. Khan and M. Ayub, Exact solutions of flow problems of an Oldroyd-B fluid, Appl. Math. Comput., 151 (2004), 105-119.  doi: 10.1016/S0096-3003(03)00326-6.  Google Scholar

[21]

M. JamilC. Fetecau and M. Rana, Some exact solutions for Oldroyd-B fluid due to time dependent prescribed shear stress, J. Theor. Appl. Mech., 50 (2012), 549-562.   Google Scholar

[22]

F. JaradT. Abdeljawad and Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana Baleanu fractional derivative, Chaos, Solitons and Fractals, 117 (2018), 16-20.  doi: 10.1016/j.chaos.2018.10.006.  Google Scholar

[23]

A. KaramiT. YousefiS. Mohebbi and C. Aghanajafi, Prediction of free convection from vertical and inclined rows of horizontal isothermal cylinders using ANFIS, Arab.J. Sci. Eng., 39 (2014), 4201-4209.  doi: 10.1007/s13369-014-1094-7.  Google Scholar

[24]

Y. LiuF. Zong and J. Dai, Unsteady helical flow of a generalized Oldroyd-B fluid with fractional derivative, Int. J. Math. Trends Technology, 5 (2014), 66-76.   Google Scholar

[25]

C. F. Lorenzo and T. T. Hartley, Generalized Functions for fractional calculus, Critical Reviews in Biomedical Engineering, 36 (2008), 39-55.  doi: 10.1615/CritRevBiomedEng.v36.i1.40.  Google Scholar

[26]

V. Mathur and K. Khandelwal, Exact solution for the flow of Oldroyd-B fluid between coaxial cylinders, Int. J. Eng. Res. Technol. (IJERT), 3 (2014), 949-954.   Google Scholar

[27] N. W. McLachlan, Bessel Functions for Engineers, Oxford Univeristy Press, London, 1955.   Google Scholar
[28]

G. Nagaraju and J. V. Ramana Murthy, MHD flow of longitudinal and torsional oscillations of a circular cylinder with suction in a couple stress fluid, Int. J. Appl. Mech. Eng., 18 (2013), 1099-1114.  doi: 10.2478/ijame-2013-0069.  Google Scholar

[29]

J. G. Oldroyd, On the formulation of rheological equations of state, Proc. R. Soc. Lond. A., 200 (1950), 523-541.  doi: 10.1098/rspa.1950.0035.  Google Scholar

[30]

J. G. Oldroyd, The motion of an elastico-viscous liquid contained between coaxial cylinders, Q. J. Mech. Appl. Math., 4 (1951), 271-282.  doi: 10.1093/qjmam/4.3.271.  Google Scholar

[31] I. Podlubny, Fractional Differential Equations, Academic Press, San Diege, 1999.   Google Scholar
[32]

K. R. Rajagopal and P. K. Bhatnagar, Exact solutions for some simple flows of an Oldroyd-B fluid, Acta Mech., 113 (1995), 233-239.  doi: 10.1007/BF01212645.  Google Scholar

[33]

A. RaufA. A. Zafar and I. A. Mirza, Unsteady rotational flows of an Oldroyd-B fluid due to tension on the boundary, Alexandria Eng J, 54 (2015), 973-979.  doi: 10.1016/j.aej.2015.09.001.  Google Scholar

[34]

N. Raza, Unsteady rotational flow of a second grade fluid with non-integer caputo time fractional derivative, Punjab University Journal of Mathematics, 49 (2017), 15-25.   Google Scholar

[35]

N. RazaM. AbdullahA. Rashid ButtA. U. Awan and E. U. Haque, Flow of a second grade fluid with fractional derivatives due to a quadratic time dependent shear stress, Alexandria Eng. J., 57 (2018), 1963-1969.  doi: 10.1016/j.aej.2017.04.004.  Google Scholar

[36]

M. Renardy, Inflow boundary condition forsteady flow of viscoelastic fluids with differential constitutive laws, Rocky Mount. J. Math., 18 (1998), 445-453.  doi: 10.1216/RMJ-1988-18-2-445.  Google Scholar

[37]

M. Renardy, An alternative approach to inflow boundary conditions for Maxwell fluids in three space dimensions, J. Non-Newtonian Fluid Mech., 36 (1990), 419-425.  doi: 10.1016/0377-0257(90)85022-Q.  Google Scholar

[38]

M. B. RiazM. I. Asjad and K. Shabbir, Analytic solutions of fractional Oldroyd-B fluid in a circular duct that applies a constant couple, Alexandria Eng. J., 55 (2016), 3267-3275.   Google Scholar

[39]

H. RudolfY. Luchko and Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Fract. Calc. Appl. Anal, 12 (2009), 299-318.   Google Scholar

[40]

J. SinghD. KumarZ. Hammouch and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Applied Mathematics and Computation, 316 (2018), 504-515.  doi: 10.1016/j.amc.2017.08.048.  Google Scholar

[41]

B. Singh and N. K. Varshney, Effect of MHD visco-elastic fluid (Oldroyd) and porous medium through a circular cylinder bounded by a permeable bed, Int. J. Math. Arch., 3 (2012), 2912-2917.   Google Scholar

[42]

R. Talhouk, Unsteady flows of viscoelastic fluids with inflow and outflow boundary conditions, Appl. Math. Lett., 9 (1996), 93-98.  doi: 10.1016/0893-9659(96)00080-8.  Google Scholar

[43]

D. Vieru and I. Siddique, Axial flow of several non-Newtonian fluids through a circular cylinder, Int. J. Appl.Mech., 2 (2010), 543-556.  doi: 10.1142/S1758825110000640.  Google Scholar

[44]

N. D. Waters and M. J. King, Unsteady flow of an elastico-viscous liquid, Rheol. Acta., 93 (1970), 345-355.   Google Scholar

[45]

A. A. Zafar, N. A. Shah and Niat Nigar, On some rotational flows of non-integer order rate type fluids with shear stress on the boundary, Ain Shams Eng J, 9 (2018), 1865-1876, https://www.sciencedirect.com/science/article/pii/S2090447917300138 doi: 10.1016/j.asej.2016.08.018.  Google Scholar

[46]

A. A. ZafarM. B. Riaz and M. I. Asjad, Unsteady Rotational Flow of fractional Maxwell Fluid in a cylinder subject to shear stress on the boundary, Punjab University Journal of Mathematics, 50 (2018), 21-32.   Google Scholar

[1]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[2]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057

[3]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019033

[4]

Atul Kumar, R. R. Yadav. Analytical approach of one-dimensional solute transport through inhomogeneous semi-infinite porous domain for unsteady flow: Dispersion being proportional to square of velocity. Conference Publications, 2013, 2013 (special) : 457-466. doi: 10.3934/proc.2013.2013.457

[5]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 1017-1029. doi: 10.3934/dcdss.2020060

[6]

Ndolane Sene. Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020173

[7]

Gui-Qiang Chen, Bo Su. A viscous approximation for a multidimensional unsteady Euler flow: Existence theorem for potential flow. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1587-1606. doi: 10.3934/dcds.2003.9.1587

[8]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 709-722. doi: 10.3934/dcdss.2020039

[9]

Ting Zhang. The modeling error of well treatment for unsteady flow in porous media. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2171-2185. doi: 10.3934/dcdsb.2015.20.2171

[10]

Michael Herty, Reinhard Illner. Analytical and numerical investigations of refined macroscopic traffic flow models. Kinetic & Related Models, 2010, 3 (2) : 311-333. doi: 10.3934/krm.2010.3.311

[11]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[12]

Amir Khan, Asaf Khan, Tahir Khan, Gul Zaman. Extension of triple Laplace transform for solving fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 755-768. doi: 10.3934/dcdss.2020042

[13]

Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems & Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27

[14]

Ekta Mittal, Sunil Joshi. Note on a $ k $-generalised fractional derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 797-804. doi: 10.3934/dcdss.2020045

[15]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055

[16]

Asim Aziz, Wasim Jamshed. Unsteady MHD slip flow of non Newtonian power-law nanofluid over a moving surface with temperature dependent thermal conductivity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 617-630. doi: 10.3934/dcdss.2018036

[17]

Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2873-2888. doi: 10.3934/cpaa.2013.12.2873

[18]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[19]

Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025

[20]

Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (77)
  • HTML views (598)
  • Cited by (0)

[Back to Top]