In this article, we study generalized fractional derivatives that contain kernels depending on a function on the space of absolute continuous functions. We generalize the Laplace transform in order to be applicable for the generalized fractional integrals and derivatives and apply this transform to solve some ordinary differential equations in the frame of the fractional derivatives under discussion.
Citation: |
[1] | T. Abdeljawad, D. Baleanu and F. Jarad, Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives, J. Math. Phys., 49 (2008), 083507, 11pp. doi: 10.1063/1.2970709. |
[2] | T. Abdeljawad, F. Jarad and D. Baleanu, On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives, Sci. China Ser. A: Math, 51 (2008), 1775-1786. doi: 10.1007/s11425-008-0068-1. |
[3] | T. Abdeljawad and D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017, 1098-1107. doi: 10.22436/jnsa.010.03.20. |
[4] | T. Abdeljawad and D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Difference Equ., 2017 (2017), Paper No. 78, 9 pp. doi: 10.1186/s13662-017-1126-1. |
[5] | Y. Adjabi, F. Jarad, D. Baleanu and T. Abdeljawad, On Cauchy problems with Caputo-Hadamard fractional derivatives, J. Comput. Anal. Appl., 21 (2016), 661-681. |
[6] | Y. Adjabi, F. Jarad and T. Abdeljawad, On generalized fractional operators and a Gronwall type inequality with applications, Filomat, 31 (2017), 5457-5473. doi: 10.2298/FIL1717457A. |
[7] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonl. Sci. Numer. Simult., 44 (2017), 460-481. doi: 10.1016/j.cnsns.2016.09.006. |
[8] | A. Atangana and D. Baleanu, New fractional derivative with non-local and non-singular kernel, Thermal Sci., 20 (2016), 757-763. |
[9] | M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. |
[10] | V. Daftardar-Gejji and H. Jaffari, Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives, J. Math. Anal. Appl., 328 (2007), 1026-1033. doi: 10.1016/j.jmaa.2006.06.007. |
[11] | D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204 (1996), 609-625. doi: 10.1006/jmaa.1996.0456. |
[12] | Y. Y. Gambo, F. Jarad, T. Abdeljawad and D. Baleanu, On Caputo modification of the Hadamard fractional derivative, Adv. Difference Equ., 2014 (2014), 12pp. doi: 10.1186/1687-1847-2014-10. |
[13] | R. Hilfer, Applications of Fractional Calculus in Physics, Word Scientific, Singapore, 2000. doi: 10.1142/9789812817747. |
[14] | F. Jarad, T. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard fractional derivative, Adv. Difference Equ., 2012 (2012), 8pp. doi: 10.1186/1687-1847-2012-142. |
[15] | F. Jarad, T. Abdeljawad and D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607-2619. doi: 10.22436/jnsa.010.05.27. |
[16] | F. Jarad, E. Uğurlu, T. Abdeljawad and D. Baleanu, On a new class of fractional operators, Adv. Difference Equ., 2017 (2017), Paper No. 247, 16 pp. doi: 10.1186/s13662-017-1306-z. |
[17] | U. N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865. doi: 10.1016/j.amc.2011.03.062. |
[18] | U. N. Katugampola, A new approach to generalized fractional derivatives, Bul. Math. Anal.Appl., 6 (2014), 1-15. |
[19] | A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Application of Fractional Fifferential Equations, North Holland Mathematics Studies, 204, Amsterdam, 2006. |
[20] | A. A. Kilbas, Hadamard type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204. |
[21] | C. F. Lorenzoand and T. T. Hartley, Variable order and distributed order fractional operators, Nonlinear Dynam., 29 (2002), 57-98. doi: 10.1023/A:1016586905654. |
[22] | R. L. Magin, Fractional calculus in Bioengineering, House Publishers, Redding, 2006. |
[23] | D. S. Oliveira and E. Capelas de Oliveira, On a Caputo-type fractional derivatives, Available from: http://www.ime.unicamp.br/sites/default/files/pesquisa/relatorios/rp-2017-13.pdf. doi: 10.1515/apam-2017-0068. |
[24] | I. Podlubny, Fractional Differential Equations, Academic Press: San Diego CA, 1999. |
[25] | S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993. |
[26] | J. Vanterler da, C. Sousa and E. Capelas de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonl. Sci. Numer. Simult., 60 (2018), 72-91. doi: 10.1016/j.cnsns.2018.01.005. |
[27] | J. Vanterler da C. Sousa and E. Capelas de Oliveira, A Gronwall inequality and the Cauchy-tupe problem by means of $\psi$-Hilfer operator, preprint, arXiv: 1709.03634. |
[28] | J. Vanterler da C. Sousa and E. Capelas de Oliveira, A new fractional derivative of variable order with non-singular order and fractional differential equations, preprint, arXiv: 1712.06506. |
[29] | X. J. Yang, H. M. Srivastava and J. A. T. Machado, A new fractional derivatives without singular kernel: Application to the modelling of the steady heat flow, Therm. Sci., 20 (2016), 753-756. |