-
Previous Article
Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative
- DCDS-S Home
- This Issue
-
Next Article
Variational principles in the frame of certain generalized fractional derivatives
Generalized fractional derivatives and Laplace transform
1. | Department of Mathematics, Çankaya University 06790, Ankara, Turkey |
2. | Department of Mathematics and General Sciences, Prince Sultan University, P. O. Box 66833, 11586 Riyadh, Saudi Arabia |
3. | Department of Medical Research, China Medical University, Taichung 40402, Taiwan |
4. | Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan |
In this article, we study generalized fractional derivatives that contain kernels depending on a function on the space of absolute continuous functions. We generalize the Laplace transform in order to be applicable for the generalized fractional integrals and derivatives and apply this transform to solve some ordinary differential equations in the frame of the fractional derivatives under discussion.
References:
[1] |
T. Abdeljawad, D. Baleanu and F. Jarad, Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives, J. Math. Phys., 49 (2008), 083507, 11pp.
doi: 10.1063/1.2970709. |
[2] |
T. Abdeljawad, F. Jarad and D. Baleanu,
On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives, Sci. China Ser. A: Math, 51 (2008), 1775-1786.
doi: 10.1007/s11425-008-0068-1. |
[3] |
T. Abdeljawad and D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017, 1098-1107.
doi: 10.22436/jnsa.010.03.20. |
[4] |
T. Abdeljawad and D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Difference Equ., 2017 (2017), Paper No. 78, 9 pp.
doi: 10.1186/s13662-017-1126-1. |
[5] |
Y. Adjabi, F. Jarad, D. Baleanu and T. Abdeljawad,
On Cauchy problems with Caputo-Hadamard fractional derivatives, J. Comput. Anal. Appl., 21 (2016), 661-681.
|
[6] |
Y. Adjabi, F. Jarad and T. Abdeljawad,
On generalized fractional operators and a Gronwall type inequality with applications, Filomat, 31 (2017), 5457-5473.
doi: 10.2298/FIL1717457A. |
[7] |
R. Almeida,
A Caputo fractional derivative of a function with respect to another function, Commun. Nonl. Sci. Numer. Simult., 44 (2017), 460-481.
doi: 10.1016/j.cnsns.2016.09.006. |
[8] |
A. Atangana and D. Baleanu, New fractional derivative with non-local and non-singular kernel, Thermal Sci., 20 (2016), 757-763. Google Scholar |
[9] |
M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. Google Scholar |
[10] |
V. Daftardar-Gejji and H. Jaffari,
Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives, J. Math. Anal. Appl., 328 (2007), 1026-1033.
doi: 10.1016/j.jmaa.2006.06.007. |
[11] |
D. Delbosco and L. Rodino,
Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204 (1996), 609-625.
doi: 10.1006/jmaa.1996.0456. |
[12] |
Y. Y. Gambo, F. Jarad, T. Abdeljawad and D. Baleanu, On Caputo modification of the Hadamard fractional derivative, Adv. Difference Equ., 2014 (2014), 12pp.
doi: 10.1186/1687-1847-2014-10. |
[13] |
R. Hilfer, Applications of Fractional Calculus in Physics, Word Scientific, Singapore, 2000.
doi: 10.1142/9789812817747. |
[14] |
F. Jarad, T. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard fractional derivative, Adv. Difference Equ., 2012 (2012), 8pp.
doi: 10.1186/1687-1847-2012-142. |
[15] |
F. Jarad, T. Abdeljawad and D. Baleanu,
On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607-2619.
doi: 10.22436/jnsa.010.05.27. |
[16] |
F. Jarad, E. Uğurlu, T. Abdeljawad and D. Baleanu, On a new class of fractional operators, Adv. Difference Equ., 2017 (2017), Paper No. 247, 16 pp.
doi: 10.1186/s13662-017-1306-z. |
[17] |
U. N. Katugampola,
New approach to generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865.
doi: 10.1016/j.amc.2011.03.062. |
[18] |
U. N. Katugampola,
A new approach to generalized fractional derivatives, Bul. Math. Anal.Appl., 6 (2014), 1-15.
|
[19] |
A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Application of Fractional Fifferential Equations, North Holland Mathematics Studies, 204, Amsterdam, 2006. |
[20] |
A. A. Kilbas,
Hadamard type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204.
|
[21] |
C. F. Lorenzoand and T. T. Hartley,
Variable order and distributed order fractional operators, Nonlinear Dynam., 29 (2002), 57-98.
doi: 10.1023/A:1016586905654. |
[22] |
R. L. Magin, Fractional calculus in Bioengineering, House Publishers, Redding, 2006. Google Scholar |
[23] |
D. S. Oliveira and E. Capelas de Oliveira, On a Caputo-type fractional derivatives, Available from: http://www.ime.unicamp.br/sites/default/files/pesquisa/relatorios/rp-2017-13.pdf.
doi: 10.1515/apam-2017-0068. |
[24] |
I. Podlubny, Fractional Differential Equations, Academic Press: San Diego CA, 1999. |
[25] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993. |
[26] |
J. Vanterler da, C. Sousa and E. Capelas de Oliveira,
On the $\psi$-Hilfer fractional derivative, Commun. Nonl. Sci. Numer. Simult., 60 (2018), 72-91.
doi: 10.1016/j.cnsns.2018.01.005. |
[27] |
J. Vanterler da C. Sousa and E. Capelas de Oliveira, A Gronwall inequality and the Cauchy-tupe problem by means of $\psi$-Hilfer operator, preprint, arXiv: 1709.03634. Google Scholar |
[28] |
J. Vanterler da C. Sousa and E. Capelas de Oliveira, A new fractional derivative of variable order with non-singular order and fractional differential equations, preprint, arXiv: 1712.06506. Google Scholar |
[29] |
X. J. Yang, H. M. Srivastava and J. A. T. Machado, A new fractional derivatives without singular kernel: Application to the modelling of the steady heat flow, Therm. Sci., 20 (2016), 753-756. Google Scholar |
show all references
References:
[1] |
T. Abdeljawad, D. Baleanu and F. Jarad, Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives, J. Math. Phys., 49 (2008), 083507, 11pp.
doi: 10.1063/1.2970709. |
[2] |
T. Abdeljawad, F. Jarad and D. Baleanu,
On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives, Sci. China Ser. A: Math, 51 (2008), 1775-1786.
doi: 10.1007/s11425-008-0068-1. |
[3] |
T. Abdeljawad and D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017, 1098-1107.
doi: 10.22436/jnsa.010.03.20. |
[4] |
T. Abdeljawad and D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Difference Equ., 2017 (2017), Paper No. 78, 9 pp.
doi: 10.1186/s13662-017-1126-1. |
[5] |
Y. Adjabi, F. Jarad, D. Baleanu and T. Abdeljawad,
On Cauchy problems with Caputo-Hadamard fractional derivatives, J. Comput. Anal. Appl., 21 (2016), 661-681.
|
[6] |
Y. Adjabi, F. Jarad and T. Abdeljawad,
On generalized fractional operators and a Gronwall type inequality with applications, Filomat, 31 (2017), 5457-5473.
doi: 10.2298/FIL1717457A. |
[7] |
R. Almeida,
A Caputo fractional derivative of a function with respect to another function, Commun. Nonl. Sci. Numer. Simult., 44 (2017), 460-481.
doi: 10.1016/j.cnsns.2016.09.006. |
[8] |
A. Atangana and D. Baleanu, New fractional derivative with non-local and non-singular kernel, Thermal Sci., 20 (2016), 757-763. Google Scholar |
[9] |
M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. Google Scholar |
[10] |
V. Daftardar-Gejji and H. Jaffari,
Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives, J. Math. Anal. Appl., 328 (2007), 1026-1033.
doi: 10.1016/j.jmaa.2006.06.007. |
[11] |
D. Delbosco and L. Rodino,
Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204 (1996), 609-625.
doi: 10.1006/jmaa.1996.0456. |
[12] |
Y. Y. Gambo, F. Jarad, T. Abdeljawad and D. Baleanu, On Caputo modification of the Hadamard fractional derivative, Adv. Difference Equ., 2014 (2014), 12pp.
doi: 10.1186/1687-1847-2014-10. |
[13] |
R. Hilfer, Applications of Fractional Calculus in Physics, Word Scientific, Singapore, 2000.
doi: 10.1142/9789812817747. |
[14] |
F. Jarad, T. Abdeljawad and D. Baleanu, Caputo-type modification of the Hadamard fractional derivative, Adv. Difference Equ., 2012 (2012), 8pp.
doi: 10.1186/1687-1847-2012-142. |
[15] |
F. Jarad, T. Abdeljawad and D. Baleanu,
On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607-2619.
doi: 10.22436/jnsa.010.05.27. |
[16] |
F. Jarad, E. Uğurlu, T. Abdeljawad and D. Baleanu, On a new class of fractional operators, Adv. Difference Equ., 2017 (2017), Paper No. 247, 16 pp.
doi: 10.1186/s13662-017-1306-z. |
[17] |
U. N. Katugampola,
New approach to generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865.
doi: 10.1016/j.amc.2011.03.062. |
[18] |
U. N. Katugampola,
A new approach to generalized fractional derivatives, Bul. Math. Anal.Appl., 6 (2014), 1-15.
|
[19] |
A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Application of Fractional Fifferential Equations, North Holland Mathematics Studies, 204, Amsterdam, 2006. |
[20] |
A. A. Kilbas,
Hadamard type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204.
|
[21] |
C. F. Lorenzoand and T. T. Hartley,
Variable order and distributed order fractional operators, Nonlinear Dynam., 29 (2002), 57-98.
doi: 10.1023/A:1016586905654. |
[22] |
R. L. Magin, Fractional calculus in Bioengineering, House Publishers, Redding, 2006. Google Scholar |
[23] |
D. S. Oliveira and E. Capelas de Oliveira, On a Caputo-type fractional derivatives, Available from: http://www.ime.unicamp.br/sites/default/files/pesquisa/relatorios/rp-2017-13.pdf.
doi: 10.1515/apam-2017-0068. |
[24] |
I. Podlubny, Fractional Differential Equations, Academic Press: San Diego CA, 1999. |
[25] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993. |
[26] |
J. Vanterler da, C. Sousa and E. Capelas de Oliveira,
On the $\psi$-Hilfer fractional derivative, Commun. Nonl. Sci. Numer. Simult., 60 (2018), 72-91.
doi: 10.1016/j.cnsns.2018.01.005. |
[27] |
J. Vanterler da C. Sousa and E. Capelas de Oliveira, A Gronwall inequality and the Cauchy-tupe problem by means of $\psi$-Hilfer operator, preprint, arXiv: 1709.03634. Google Scholar |
[28] |
J. Vanterler da C. Sousa and E. Capelas de Oliveira, A new fractional derivative of variable order with non-singular order and fractional differential equations, preprint, arXiv: 1712.06506. Google Scholar |
[29] |
X. J. Yang, H. M. Srivastava and J. A. T. Machado, A new fractional derivatives without singular kernel: Application to the modelling of the steady heat flow, Therm. Sci., 20 (2016), 753-756. Google Scholar |
[1] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[2] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[3] |
Iman Malmir. Caputo fractional derivative operational matrices of legendre and chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021013 |
[4] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[5] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[6] |
Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021005 |
[7] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[8] |
Shuting Chen, Zengji Du, Jiang Liu, Ke Wang. The dynamic properties of a generalized Kawahara equation with Kuramoto-Sivashinsky perturbation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021098 |
[9] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056 |
[10] |
Zhenquan Zhang, Meiling Chen, Jiajun Zhang, Tianshou Zhou. Analysis of non-Markovian effects in generalized birth-death models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3717-3735. doi: 10.3934/dcdsb.2020254 |
[11] |
Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021002 |
[12] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021014 |
[13] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[14] |
Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182 |
[15] |
Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249 |
[16] |
Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270 |
[17] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002 |
[18] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007 |
[19] |
Maha Daoud, El Haj Laamri. Fractional Laplacians : A short survey. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021027 |
[20] |
George A. Anastassiou. Iyengar-Hilfer fractional inequalities. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021004 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]