
-
Previous Article
Channel flow of fractionalized H2O-based CNTs nanofluids with Newtonian heating
- DCDS-S Home
- This Issue
-
Next Article
Comparative study of fractional Fokker-Planck equations with various fractional derivative operators
Extension of triple Laplace transform for solving fractional differential equations
1. | Department of Mathematics and Statistics, University of Swat, Khyber Pakhtunkhwa, Pakistan |
2. | Department of Mathematics, University of Malakand, Chakadara, Lower Dir, Khyber Pakhtunkhwa, Pakistan |
In this article, we extend the concept of triple Laplace transform to the solution of fractional order partial differential equations by using Caputo fractional derivative. The concerned transform is applicable to solve many classes of partial differential equations with fractional order derivatives and integrals. As a consequence, fractional order telegraph equation in two dimensions is investigated in detail and the solution is obtained by using the aforementioned triple Laplace transform, which is the generalization of double Laplace transform. The same problem is also solved by taking into account the Atangana-Baleanu fractional derivative. Numerical plots are provided for the comparison of Caputo and Atangana-Baleanu fractional derivatives.
References:
[1] |
A. M. O. Anwar, F. Jarad, D. Baleanu and F. Ayaz,
Fractional Caputo heat equation within the double Laplace transform, Romanian Journal of Physics, 58 (2013), 15-22.
|
[2] |
A. Atangana, A note on the triple Laplace transform and its applications to some kind of third-order differential equation, Abstr. Appl. Anal., 2013 (2013), Art. ID 769102, 10 pp.
doi: 10.1155/2013/769102. |
[3] |
A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel, theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. Google Scholar |
[4] |
A. Atangana,
On the new fractional derivative and application to nonlinear Fishers reaction-diffusion equation, Appl. Math. Comput., 273 (2016), 948-956.
doi: 10.1016/j.amc.2015.10.021. |
[5] |
A. Atangana and J. J. Nieto, Numerical solution for the model of RLC circuit via the fractionl derivative without singular kernel, Adv. Mech. Eng., 7 (2015), 1-7. Google Scholar |
[6] |
D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional calculus: Models and Numerical Methods, World Science, 2012.
doi: 10.1142/9789814355216. |
[7] |
D. G. Duffy, Transform Methods for Solving Partial Differential Equations, CRC press, 2004.
doi: 10.1201/9781420035148.![]() ![]() |
[8] |
T. A. Estrin and T. J. Higgins,
The solution of boundary value problems by multiple Laplace transformations, Journal of the Franklin Institute, 252 (1951), 153-167.
doi: 10.1016/0016-0032(51)90950-7. |
[9] |
F. Gao and X. J. Yang,
Fractional Maxwell fluid with fractional derivative without singular kernel, Therm. Sci., 20 (2016), 871-877.
doi: 10.2298/TSCI16S3871G. |
[10] |
H. Jafari, A. Kadem, D. Baleanu and T. Yalmaz, Solutions of the fractional Davey-Stewartson equations with variational iteration method, Rom. Rep. Phy., 64 (2017), 337-346. Google Scholar |
[11] |
F. Jarad, T. Abdeljawad, E. Gndogdu and D. Baleanu,
On the Mittag-Leffler stability of q-fractional nonlinear dynamical systems, P. Romanian Acad. A, 12 (2011), 309-314.
|
[12] |
Y. Khan, J. Diblik, N. Faraz and Z. Smarda,
An efficient new perturbative Laplace method for space-time fractional telegraph equations, Adv. Differ. Equ-NY, 2012 (2012), 9pp.
doi: 10.1186/1687-1847-2012-204. |
[13] |
T. Khan, K. Shah, A. Khan and R. A. Khan,
Solution of fractional order heat equation via triple Laplace transform in 2 dimensions, Math. Meth. Appl. Sci., 41 (2018), 818-825.
doi: 10.1002/mma.4646. |
[14] |
A. A. Kilbas, O. I. Marichev and S. G. Samko, Fractional Integral and Derivatives (Theory and Applications), Gordon and Breach, Switzerland, 1993. |
[15] |
A. Kilicman and H. E. Gadain,
On the applications of Laplace and Sumudu transforms, Journal of the Franklin Institute, 347 (2010), 848-862.
doi: 10.1016/j.jfranklin.2010.03.008. |
[16] |
D. Kumar, J. Singh and S. Kumar, Analytic and approximate solutions of space-time fractional telegraph equations via Laplace transform, Walailak J. Sci. and Tech., 11 (2014), 711-728. Google Scholar |
[17] |
S. Kumar,
A new analytical modelling for fractional telegraph equation via Laplace transform, Appl. Math. Model., 38 (2014), 3154-3163.
doi: 10.1016/j.apm.2013.11.035. |
[18] |
V. Lakshmikantham and A. S. Vatsala,
Basic theory of fractional differential equations, Nonlinear Analysis: Theory, Methods and Applications, 69 (2008), 2677-2682.
doi: 10.1016/j.na.2007.08.042. |
[19] |
R. Metzler, W. Schick, H. G. Kilian and T. F. Nonnenmacher,
Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phy., 103 (1995), 7180-7186.
doi: 10.1063/1.470346. |
[20] |
R. C. Mittal and R. Bhatia,
A numerical study of two dimensional hyperbolic telegraph equation by modified B-spline differential quadrature method, Appl. Math. Comput., 244 (2014), 976-997.
doi: 10.1016/j.amc.2014.07.060. |
[21] |
M. K. Owolabi and A. Atangana,
Analysis of mathematics and numerical pattern formation in superdiffusive fractional multicomponent system, Adv. Appl. Math. Mech., 9 (2017), 1438-1460.
doi: 10.4208/aamm.OA-2016-0115. |
[22] |
K. M. Owolabi and A. Atangana,
Numerical approximation of nonlinear fractional parabolic differential equations with Caputo Fabrizio derivative in Riemann Liouville sense, Chaos Solitons & Fractals, 99 (2017), 171-179.
doi: 10.1016/j.chaos.2017.04.008. |
[23] |
K. M. Owolabi,
Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative, Eur. Phys. J. Plus., 133 (2018), 15.
doi: 10.1140/epjp/i2018-11863-9. |
[24] |
K. M. Owolabi,
Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator, Eur. Phys. J. Plus., 133 (2018), 98.
doi: 10.1140/epjp/i2018-11951-x. |
[25] |
K. M. Owolabi and A. Atangana,
Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations, Chaos Solitons Fractals, 111 (2018), 119-127.
doi: 10.1016/j.chaos.2018.04.019. |
[26] |
I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives,
Fractional Differential Equations, to Methods of their Solution and some of their Applications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999. |
[27] |
J. Unsworth and F. J. Duarte,
Heat diffusion in a solid sphere and Fourier theory: an elementary practical example, Am. J. Phys., 47 (1979), 981-983.
doi: 10.1119/1.11601. |
[28] |
A. M. Yang, Y. Han, J. Li J and W. X. Liu,
On steady heat flow problem involving Yang-Srivastava-Machado fractional derivative without singular kernel, Therm. Sci., 20 (2016), 717-721.
doi: 10.2298/TSCI16S3717Y. |
show all references
References:
[1] |
A. M. O. Anwar, F. Jarad, D. Baleanu and F. Ayaz,
Fractional Caputo heat equation within the double Laplace transform, Romanian Journal of Physics, 58 (2013), 15-22.
|
[2] |
A. Atangana, A note on the triple Laplace transform and its applications to some kind of third-order differential equation, Abstr. Appl. Anal., 2013 (2013), Art. ID 769102, 10 pp.
doi: 10.1155/2013/769102. |
[3] |
A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel, theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. Google Scholar |
[4] |
A. Atangana,
On the new fractional derivative and application to nonlinear Fishers reaction-diffusion equation, Appl. Math. Comput., 273 (2016), 948-956.
doi: 10.1016/j.amc.2015.10.021. |
[5] |
A. Atangana and J. J. Nieto, Numerical solution for the model of RLC circuit via the fractionl derivative without singular kernel, Adv. Mech. Eng., 7 (2015), 1-7. Google Scholar |
[6] |
D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional calculus: Models and Numerical Methods, World Science, 2012.
doi: 10.1142/9789814355216. |
[7] |
D. G. Duffy, Transform Methods for Solving Partial Differential Equations, CRC press, 2004.
doi: 10.1201/9781420035148.![]() ![]() |
[8] |
T. A. Estrin and T. J. Higgins,
The solution of boundary value problems by multiple Laplace transformations, Journal of the Franklin Institute, 252 (1951), 153-167.
doi: 10.1016/0016-0032(51)90950-7. |
[9] |
F. Gao and X. J. Yang,
Fractional Maxwell fluid with fractional derivative without singular kernel, Therm. Sci., 20 (2016), 871-877.
doi: 10.2298/TSCI16S3871G. |
[10] |
H. Jafari, A. Kadem, D. Baleanu and T. Yalmaz, Solutions of the fractional Davey-Stewartson equations with variational iteration method, Rom. Rep. Phy., 64 (2017), 337-346. Google Scholar |
[11] |
F. Jarad, T. Abdeljawad, E. Gndogdu and D. Baleanu,
On the Mittag-Leffler stability of q-fractional nonlinear dynamical systems, P. Romanian Acad. A, 12 (2011), 309-314.
|
[12] |
Y. Khan, J. Diblik, N. Faraz and Z. Smarda,
An efficient new perturbative Laplace method for space-time fractional telegraph equations, Adv. Differ. Equ-NY, 2012 (2012), 9pp.
doi: 10.1186/1687-1847-2012-204. |
[13] |
T. Khan, K. Shah, A. Khan and R. A. Khan,
Solution of fractional order heat equation via triple Laplace transform in 2 dimensions, Math. Meth. Appl. Sci., 41 (2018), 818-825.
doi: 10.1002/mma.4646. |
[14] |
A. A. Kilbas, O. I. Marichev and S. G. Samko, Fractional Integral and Derivatives (Theory and Applications), Gordon and Breach, Switzerland, 1993. |
[15] |
A. Kilicman and H. E. Gadain,
On the applications of Laplace and Sumudu transforms, Journal of the Franklin Institute, 347 (2010), 848-862.
doi: 10.1016/j.jfranklin.2010.03.008. |
[16] |
D. Kumar, J. Singh and S. Kumar, Analytic and approximate solutions of space-time fractional telegraph equations via Laplace transform, Walailak J. Sci. and Tech., 11 (2014), 711-728. Google Scholar |
[17] |
S. Kumar,
A new analytical modelling for fractional telegraph equation via Laplace transform, Appl. Math. Model., 38 (2014), 3154-3163.
doi: 10.1016/j.apm.2013.11.035. |
[18] |
V. Lakshmikantham and A. S. Vatsala,
Basic theory of fractional differential equations, Nonlinear Analysis: Theory, Methods and Applications, 69 (2008), 2677-2682.
doi: 10.1016/j.na.2007.08.042. |
[19] |
R. Metzler, W. Schick, H. G. Kilian and T. F. Nonnenmacher,
Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phy., 103 (1995), 7180-7186.
doi: 10.1063/1.470346. |
[20] |
R. C. Mittal and R. Bhatia,
A numerical study of two dimensional hyperbolic telegraph equation by modified B-spline differential quadrature method, Appl. Math. Comput., 244 (2014), 976-997.
doi: 10.1016/j.amc.2014.07.060. |
[21] |
M. K. Owolabi and A. Atangana,
Analysis of mathematics and numerical pattern formation in superdiffusive fractional multicomponent system, Adv. Appl. Math. Mech., 9 (2017), 1438-1460.
doi: 10.4208/aamm.OA-2016-0115. |
[22] |
K. M. Owolabi and A. Atangana,
Numerical approximation of nonlinear fractional parabolic differential equations with Caputo Fabrizio derivative in Riemann Liouville sense, Chaos Solitons & Fractals, 99 (2017), 171-179.
doi: 10.1016/j.chaos.2017.04.008. |
[23] |
K. M. Owolabi,
Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative, Eur. Phys. J. Plus., 133 (2018), 15.
doi: 10.1140/epjp/i2018-11863-9. |
[24] |
K. M. Owolabi,
Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator, Eur. Phys. J. Plus., 133 (2018), 98.
doi: 10.1140/epjp/i2018-11951-x. |
[25] |
K. M. Owolabi and A. Atangana,
Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations, Chaos Solitons Fractals, 111 (2018), 119-127.
doi: 10.1016/j.chaos.2018.04.019. |
[26] |
I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives,
Fractional Differential Equations, to Methods of their Solution and some of their Applications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999. |
[27] |
J. Unsworth and F. J. Duarte,
Heat diffusion in a solid sphere and Fourier theory: an elementary practical example, Am. J. Phys., 47 (1979), 981-983.
doi: 10.1119/1.11601. |
[28] |
A. M. Yang, Y. Han, J. Li J and W. X. Liu,
On steady heat flow problem involving Yang-Srivastava-Machado fractional derivative without singular kernel, Therm. Sci., 20 (2016), 717-721.
doi: 10.2298/TSCI16S3717Y. |






[1] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021014 |
[2] |
Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269 |
[3] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[4] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[5] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[6] |
Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033 |
[7] |
Maha Daoud, El Haj Laamri. Fractional Laplacians : A short survey. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021027 |
[8] |
George A. Anastassiou. Iyengar-Hilfer fractional inequalities. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021004 |
[9] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[10] |
Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021073 |
[11] |
Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021013 |
[12] |
Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021107 |
[13] |
Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021025 |
[14] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[15] |
Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021022 |
[16] |
Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2993-3020. doi: 10.3934/dcds.2020394 |
[17] |
Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021062 |
[18] |
Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021004 |
[19] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021068 |
[20] |
Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021038 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]