[1]
|
A. A. Alrashed, O. A. Akbari, A. Heydari, D. Toghraie, M. Zarringhalam, G. A. S. Shabani, A. R. Seifi and M. Goodarzi, The numerical modeling of water/fmwcnt nanofluid flow and heat transfer in a backward-facing contracting channel, Physica B: Condensed Matter, 537 (2018), 176-183.
doi: 10.1016/j.physb.2018.02.022.
|
[2]
|
S. Aman, I. Khan, Z. Ismail, M. Z. Salleh, A. S. Alshomrani and M. S. Alghamdi, Magnetic field effect on poiseuille flow and heat transfer of carbon nanotubes along a vertical channel filled with casson fluid, AIP Advances, 7 (2017), 015036.
doi: 10.1063/1.4975219.
|
[3]
|
S. Aminossadati and B. Ghasemi, Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure, European Journal of Mechanics-B/Fluids, 28 (2009), 630-640.
doi: 10.1016/j.euromechflu.2009.05.006.
|
[4]
|
A. Arabpour, A. Karimipour and D. Toghraie, The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (mwcnts) nanofluid in the microchannel heat sink with slip boundary condition, Journal of Thermal Analysis and Calorimetry, 131 (2018), 1553-1566.
doi: 10.1007/s10973-017-6649-x.
|
[5]
|
A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with markovian and non-markovian properties, Physica A: Statistical Mechanics and its Applications, 505 (2018), 688-706.
doi: 10.1016/j.physa.2018.03.056.
|
[6]
|
A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Chaos, 28 (2018), 063109, 6 pp, arXiv:1602.03408.
doi: 10.1063/1.5026284.
|
[7]
|
A. Atangana and J. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018), 166.
doi: 10.1140/epjp/i2018-12021-3.
|
[8]
|
W. A. Azhar, D. Vieru and C. Fetecau, Free convection flow of some fractional nanofluids over a moving vertical plate with uniform heat flux and heat source, Physics of Fluids, 29 (2017), 082001.
doi: 10.1063/1.4996034.
|
[9]
|
H. Brinkman, The viscosity of concentrated suspensions and solutions, The Journal of Chemical Physics, 20 (1952), 571-571.
doi: 10.1063/1.1700493.
|
[10]
|
S. Chol and J. Estman, "Enhancing thermal conductivity of fluids with nanoparticles," ASME-Publications-Fed, vol. 231, pp. 99-106, 1995.
|
[11]
|
C. Fetecau, D. Vieru and W. A. Azhar, Natural convection flow of fractional nanofluids over an isothermal vertical plate with thermal radiation, Applied Sciences, 7 (2017), 247.
doi: 10.3390/app7030247.
|
[12]
|
R. Ganvir, P. Walke and V. Kriplani, Heat transfer characteristics in nanofluid-a review, Renewable and Sustainable Energy Reviews, 75 (2017), 451-460.
doi: 10.1016/j.rser.2016.11.010.
|
[13]
|
D. Halsted and D. Brown, Zakian's technique for inverting laplace transforms, The Chemical Engineering Journal, 3 (1972), 312-313.
doi: 10.1016/0300-9467(72)85037-8.
|
[14]
|
R. U. Haq, F. Shahzad and Q. M. Al-Mdallal, Mhd pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders, Results in Physics, 7 (2017), 57-68.
doi: 10.1016/j.rinp.2016.11.057.
|
[15]
|
M. Hassan, A. Faisal and M. M. Bhatti, Interaction of aluminum oxide nanoparticles with flow of polyvinyl alcohol solutions base nanofluids over a wedge, Applied Nanoscience, 8 (2018), 53-60.
doi: 10.1007/s13204-018-0651-x.
|
[16]
|
S. Iijima, Helical microtubules of graphitic carbon, nature, 354 (1991), 56-58.
doi: 10.1038/354056a0.
|
[17]
|
S. A. A. Jan, F. Ali, N. A. Sheikh, I. Khan, M. Saqib and M. Gohar, Engine oil based generalized brinkman-type nano-liquid with molybdenum disulphide nanoparticles of spherical shape: Atangana-baleanu fractional model, Numerical Methods for Partial Differential Equations, 34 (2018), 1472-1488.
doi: 10.1002/num.22200.
|
[18]
|
M. H. Matin and I. Pop, Forced convection heat and mass transfer flow of a nanofluid through a porous channel with a first order chemical reaction on the wall, International Communications in Heat and Mass Transfer, 46 (2013), 134-141.
doi: 10.1016/j.icheatmasstransfer.2013.05.001.
|
[19]
|
S. S. Murshed, C. N. De Castro, M. Lourenço, M. Lopes and F. Santos, A review of boiling and convective heat transfer with nanofluids, Renewable and Sustainable Energy Reviews, 15 (2011), 2342-2354.
doi: 10.1016/j.rser.2011.02.016.
|
[20]
|
M. R. Safaei, G. Ahmadi, M. S. Goodarzi, A. Kamyar and S. Kazi, Boundary layer flow and heat transfer of fmwcnt/water nanofluids over a flat plate, Fluids, 1 (2016), 31.
doi: 10.3390/fluids1040031.
|
[21]
|
M. Saqib, F. Ali, I. Khan, N. A. Sheikh and S. B. Shafie, Convection in ethylene glycol-based molybdenum disulfide nanofluid, Journal of Thermal Analysis and Calorimetry, (2018), 1-10.
doi: 10.1007/s10973-018-7054-9.
|
[22]
|
N. A. Sheikh, F. Ali, I. Khan, M. Gohar and M. Saqib, On the applications of nanofluids to enhance the performance of solar collectors: A comparative analysis of atangana-baleanu and caputo-fabrizio fractional models, The European Physical Journal Plus, 132 (2017), 540.
|
[23]
|
A. A. Tateishi, H. V. Ribeiro and E. K. Lenzi, The role of fractional time-derivative operators on anomalous diffusion, Frontiers in Physics, 5 (2017), 52.
|
[24]
|
D. Y. Tzou, Macro-to Microscale Heat Transfer: The Lagging Behavior, John Wiley & Sons, 2014.
doi: 10.1002/9781118818275.
|
[25]
|
Q. Wang and H. Zhan, On different numerical inverse laplace methods for solute transport problems, Advances in Water Resources, 75 (2015), 80-92.
doi: 10.1016/j.advwatres.2014.11.001.
|
[26]
|
Q. Xue, Model for thermal conductivity of carbon nanotube-based composites, Physica B: Condensed Matter, 368 (2005), 302-307.
doi: 10.1016/j.physb.2005.07.024.
|
[27]
|
V. Zakian and R. Littlewood, Numerical inversion of laplace transforms by weighted least-squares approximation, The Computer Journal, 16 (1973), 66-68.
doi: 10.1093/comjnl/16.1.66.
|