In this paper, we introduce the $ k $-generalised fractional derivatives with three parameters which reduced to $ k $-fractional Hilfer derivatives and $ k $-Riemann-Liouville fractional derivative as an interesting special cases. Further, we have also introduced some presumably new fascinating results which include the image power function, Laplace transform and composition of $ k $-Riemann-Liouville fractional integral with generalized composite fractional derivative. The technique developed in this paper can be used in other situation as well.
Citation: |
[1] |
R. Dıaz and E. Pariguan, On hypergeometric functions and pochhammer k-symbol, Divulg. Mat, 15 (2007), 179-192.
![]() ![]() |
[2] |
G. A. Dorrego and R. A. Cerutti, The k-fractional hilfer derivative, International Journal of Mathematical Analysis, 7 (2013), 543-550.
doi: 10.12988/ijma.2013.13051.![]() ![]() ![]() |
[3] |
R. Garra, R. Gorenflo, F. Polito and Ž Tomovski, Hilfer–prabhakar derivatives and some applications, Applied Mathematics and Computation, 242 (2014), 576-589.
doi: 10.1016/j.amc.2014.05.129.![]() ![]() ![]() |
[4] |
R. Hilfer et al., Applications of Fractional Calculus in Physics, vol. 35, World Scientific, 2000.
doi: 10.1142/9789812817747.![]() ![]() ![]() |
[5] |
O. S. Iyiola, Solving k-fractional hilfer differential equations via combined fractional integral transform methods, British Journal of Mathematics & Computer Science, 4 (2014), 1427-1436.
doi: 10.9734/BJMCS/2014/9444.![]() ![]() |
[6] |
C. G. Kokologiannaki, Properties and inequalities of generalized k-gamma, beta and zeta functions, Int. J. Contemp. Math. Sciences, 5 (2010), 653-660.
![]() ![]() |
[7] |
M. Mansour, Determining the k-generalized gamma function $\gamma$k (x) by functional equations, Int. J. Contemp. Math. Sciences, 4 (2009), 1037-1042.
![]() ![]() |
[8] |
K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1993.
![]() ![]() |
[9] |
G. Mridula, P. Manohar, L. Chanchalani and A. Subhash, On generalized composite fractional derivative, Walailak Journal of Science and Technology (WJST), 11 (2014), 1069-1076.
![]() |
[10] |
S. Mubeen and G. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci, 7 (2012), 89-94.
![]() ![]() |
[11] |
S. Mubeen, A. Rehman and F. Shaheen, Properties of k-gamma, k-beta and k-psi functions, Bothalia Journal, 5 (2014), 371-379.
![]() |
[12] |
L. G. Romero, L. L. Luque, G. A. Dorrego and R. A. Cerutti, On the k-riemann-liouville fractional derivative, Int. J. Contemp. Math. Sci, 8 (2013), 41-51.
doi: 10.12988/ijcms.2013.13004.![]() ![]() ![]() |