[1]
|
B. S. Alkahtani, O. J. Algahtani, R. S. Dubey and P. Goswami, The solution of modified fractional bergman's minimal blood glucose-insulin model, Entropy, 19 (2017), 114.
doi: 10.3390/e19050114.
|
[2]
|
A. Atangana, Derivative with a New Parameter: Theory, Methods and Applications, Academic Press, New York, 2016.
doi: 10.1016/B978-0-08-100644-3.00001-5.
|
[3]
|
A. Atangana, Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology, Academic Press, London, 2018.
|
[4]
|
A. Atangana and K. M. Owolabi., New numerical approach for fractional differential equations, Mathematical Modelling of Natural Phenomena, 13 (2018), 1-21.
doi: 10.1051/mmnp/2018010.
|
[5]
|
A. Atangana, Blind in a commutative world: Simple illustrations with functions and chaotic attractors, Chaos, Solitons & Fractals, 114 (2018), 347-363.
doi: 10.1016/j.chaos.2018.07.022.
|
[6]
|
A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A: Statistical Mechanics and its Applications, 505 (2018), 688-706.
doi: 10.1016/j.physa.2018.03.056.
|
[7]
|
A. Atangana and J. F. Gómez Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018), 1-23.
|
[8]
|
A. Atangana and E. F. D. Goufo, On the mathematical analysis of Ebola hemorrhagic fever: Deathly infection disease in West African countries, BioMed Research International, 2014 (2014), Article ID 261383, 7 pages.
doi: 10.1155/2014/261383.
|
[9]
|
A. Atangana and B. S. T. Alkahtani, Modeling the spread of Rubella disease using the concept of with local derivative with fractional parameter, Complexity, 21 (2016), 442-451.
doi: 10.1002/cplx.21704.
|
[10]
|
A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm Sci., 20 (2016), 763-769.
doi: 10.2298/TSCI160111018A.
|
[11]
|
R. N. Bergman, Y. Z. Ider, C. R. Bowden and C. Cobelli, Quantitative estimation of insulin sensitivity, American Journal of Physiology-Endocrinology And Metabolism, 236 (1979), 667-677.
doi: 10.1152/ajpendo.1979.236.6.E667.
|
[12]
|
A. Caumo, C. Cobelli and M. Omenetto, Overestimation of minimal model glucose effectiveness in presence of insulin response is due to under modeling, American Journal of Physiology, 278 (1999), 481-488.
|
[13]
|
A. De Gaetano and O. Arino, Mathematical modelling of the intravenous glucose tolerance test, Journal of Mathematical Biology, 40 (2000), 136-168.
doi: 10.1007/s002850050007.
|
[14]
|
L. C. Gatewood, E. Ackerman, J. W. Rosevear, G. D. Molnar and T. W. Burns, Tests of a mathematical model of the blood-glucose regulatory system, Computional Biomedical Research, 2 (1968), 1-14.
doi: 10.1016/0010-4809(68)90003-7.
|
[15]
|
A. Fabre and J. Hristov, On the integral-balance approach to the transient heat conduction with linearly temperature-dependent thermal diffusivity, Heat and Mass Transfer, 53 (2017), 177-204.
doi: 10.1007/s00231-016-1806-5.
|
[16]
|
J. Hristov, Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey's kernel and analytical solutions, Thermal Science, 1 (2016), 115-115.
|
[17]
|
R. Jain, K. Arekar and R. Shanker Dubey, Study of Bergman's minimal blood glucose-insulin model by Adomian decomposition method, Journal of Information and Optimization Sciences, 38 (2017), 133-149.
doi: 10.1080/02522667.2016.1187919.
|
[18]
|
F. Jarad, E. Ugurlu, T. Abdeljawad and D. Baleanu, On a new class of fractional operators, Advances in Difference Equations, 2017 (2017), Paper No. 247, 16 pp.
doi: 10.1186/s13662-017-1306-z.
|
[19]
|
R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264 (2014), 65-70.
doi: 10.1016/j.cam.2014.01.002.
|
[20]
|
S. Kumar, A. Kumar and I. K. Argyros, A new analysis for the Keller-Segel model of fractional order, Numerical Algorithms, 75 (2017), 213-228.
doi: 10.1007/s11075-016-0202-z.
|
[21]
|
S. Kumar, A new analytical modelling for telegraph equation via Laplace transform, Appl. Math. Modell, 38 (2014), 3154-3163.
doi: 10.1016/j.apm.2013.11.035.
|
[22]
|
S. Kumar and M. M. Rashidi, New analytical method for gas dynamic equation arising in shock fronts, Comput. Phy. Commun, 185 (2014), 1947-1954.
doi: 10.1016/j.cpc.2014.03.025.
|
[23]
|
G. A. Losa, On the fractal design in human brain and nervous tissue, Applied Mathematics, 5 (2014), 1725-1732.
doi: 10.4236/am.2014.512165.
|
[24]
|
V. F. Morales-Delgado, J. F. Gómez-Aguilar, S. Kumar and M. A. Taneco-Hernández, Analytical solutions of the Keller-Segel chemotaxis model involving fractional operators without singular kernel, The European Physical Journal Plus, 133 (2018), 200.
doi: 10.1140/epjp/i2018-12038-6.
|
[25]
|
Z. Odibat and A. S. Bataineh, An adaptation of homotopy analysis method for reliable treatment of strongly nonlinear problems: Construction of homotopy polynomials, Math. Meth. Appl. Sci, 38 (2015), 991-1000.
doi: 10.1002/mma.3136.
|
[26]
|
K. M. Owolabi, Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Communications in Nonlinear Science and Numerical Simulation, 44 (2017), 304-317.
doi: 10.1016/j.cnsns.2016.08.021.
|
[27]
|
K. M. Owolabi and A. Atangana, Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative, The European physical Journal Plus, 131 (2016), 335.
doi: 10.1140/epjp/i2016-16335-8.
|
[28]
|
I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications, Academic Press, an Diego, California, USA, 1999.
|