Advanced Search
Article Contents
Article Contents

Numerical simulation of multidimensional nonlinear fractional Ginzburg-Landau equations

Abstract Full Text(HTML) Figure(5) Related Papers Cited by
  • Ginzburg-Landau equation has a rich record of success in describing a vast variety of nonlinear phenomena such as liquid crystals, superfluidity, Bose-Einstein condensation and superconductivity to mention a few. Fractional order equations provide an interesting bridge between the diffusion wave equation of mathematical physics and intuition generation, it is of interest to see if a similar generalization to fractional order can be useful here. Non-integer order partial differential equations describing the chaotic and spatiotemporal patterning of fractional Ginzburg-Landau problems, mostly defined on simple geometries like triangular domains, are considered in this paper. We realized through numerical experiments that the Ginzburg-Landau equation world is bounded between the limits where new phenomena and scenarios evolve, such as sink and source solutions (spiral patterns in 2D and filament-like structures in 3D), various core and wave instabilities, absolute instability versus nonlinear convective cases, competition and interaction between sources and chaos spatiotemporal states. For the numerical simulation of these kind of problems, spectral methods provide a fast and efficient approach.

    Mathematics Subject Classification: Primary: 34A34, 35A05, 35K57; Secondary: 65L05, 65M06, 93C10.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Space-time mesh results of (24) showing chaotic states in the spatiotemporal regime for parameters $ (b,c) = (1, -1.3) $ at different instances of fractional index $ \alpha $ and $ t = 40 $. simulation runs for $ N = 200 $ with step size $ h = 0.1 $

    Figure 2.  Solution of the 2D fractional complex Ginzburg-Landau equation on $ [0,200]\times [0,200] $ with $ b = 1 $ for both the focusing case: $ c = 1.3 $ (first-column) and the defocussing case: $ c = -1.3 $ (second-column) at final time $ t = 100 $, $ \alpha = (0.85, 1.0, 1.50) $ and $ N = 200 $

    Figure 3.  The first and second columns represent 3D results of the fractional complex Ginzburg-Landau equation on $ [0, 20]^3 $ obtained at instances $ \alpha = (0.5, 1.0, 1.50) $ for random and initial conditions respectively. Other parameters are: $ b = 1, L = 20 $ and final time $ t = 10 $ (N = 100)

    Figure 4.  The 2D results of fractional-in-space problem (24) showing the bound state of oppositely- and like-charged spirals at some instances of fractional power $ \alpha $. simulation runs for $ N = 200 $

    Figure 5.  The 3D isosurfaces of $ |u(x,y,z)| $ of (24) showing chaotic patterns at different instances of $ \alpha $ for $ \epsilon = -0.05; b = 1.0, \phi = 1.0, c = 1.3, \psi = 1.0, d = 0.105, \varphi = 0.03, L = 20 $ and final time $ t = 20 $. Simulation runs for $ N = 64 $

  • [1] G. Akrivis, Implicit-explicit multistep methods for nonlinear parabolic equations, Mathematical Computation, 82 (2013), 45-68.  doi: 10.1090/S0025-5718-2012-02628-7.
    [2] G. Akrivis, Stability properties of implicit-explicit multistep methods for a class of nonlinear parabolic equations, Mathematical Computation, 85 (2016), 2217-2229.  doi: 10.1090/mcom/3070.
    [3] A. Atangana, On the stability and convergence of the time-fractional variable order telegraph equation, Journal of Computational Physics, 293 (2015), 104-114.  doi: 10.1016/j.jcp.2014.12.043.
    [4] A. AtanganaDerivative with a New Parameter : Theory, Methods and Applications, Academic Press, New York, 2016.  doi: 10.1016/B978-0-08-100644-3.00001-5.
    [5] A. AtanganaFractional Operators With Constant and Variable Order with Application to Geo-Hydrology, Academic Press, London, 2018. 
    [6] A. Atangana and S. Jain, A new numerical approximation of the fractal ordinary differential equation, The European Physical Journal Plus, 133 (2018), 37. doi: 10.1140/epjp/i2018-11895-1.
    [7] A. Atangana and K. M. Owolabi, New numerical approach for fractional differential equations, Mathematical Modelling of Natural Phenomena, 13 (2018), Art. 3, 21 pp. doi: 10.1051/mmnp/2018010.
    [8] F. Bérad and S. C. Mancas, Spatiotemporal two-dimensional solitons in the complex Ginzburg-Landau equations, Advances and Applications in Fluid Mechanics, 8 (2011), 141-156. 
    [9] P. BilerT. Funaki and W. A. Woyczynski, Fractal Burgers equations, Journal of Differential Equations, 148 (1998), 9-46.  doi: 10.1006/jdeq.1998.3458.
    [10] G. W. S. Blair, The role of psychophysics in rheology, Journal Colloid Sciences, 2 (1947), 21-32. 
    [11] G. W. S. Blair, Measurements of Mind and Matter, Dennis Dobson, London, 1950.
    [12] A. Bueno-OrovioD. Kay and K. Burrage, Fourier spectral methods for fractional-in-space reaction-diffusion equations, BIT Numerical Mathematics, 54 (2014), 937-954.  doi: 10.1007/s10543-014-0484-2.
    [13] M. Caputo, Linear models of dissipation whose $\mathcal{Q}$ is almost frequency independent: Part Ⅱ, Geophysical Journal International, 13 (1967), 529-539: Reprinted in: Fractional Calculus and Applied Analysis, 11 (2008), 3-14.
    [14] A. Carpinteri and F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Vienna-New York, 1997.
    [15] C. Cartes, J. Cisternas, O. Descalzi and H. R. Brand, Model of a two-dimensional extended chaotic system: Evidence of diffusing dissipative solitons, Physical Review Letters, 109 (2012), 178303. doi: 10.1103/PhysRevLett.109.178303.
    [16] S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, Journal of Computational Physics, 176 (2002), 430-455.  doi: 10.1006/jcph.2002.6995.
    [17] M. Davison and C. Essex, Fractional differential equations and initial value problems, Mathematical Scientist, 23 (1998), 108-116. 
    [18] V. Garca-Morales and K. Krischer, The complex Ginzburg-Landau equation: An introduction, Contemporary Physics, 53 (2012), 79-95.  doi: 10.1080/00107514.2011.642554.
    [19] A. N. Gerasimov, A generalization of linear laws of deformation and its application to inner friction problems, Prikl. Mat. Mekh., 12 (1948), 251-259. 
    [20] B. Guo, X. Pu and F. Huang, Fractional Partial Differential Equations and Their Numerical Solutions, World Scientific, Singapore, 2015. doi: 10.1142/9543.
    [21] S. Jain, Numerical analysis for the fractional diffusion and fractional Buckmaster's equation by two step adam- bashforth method, The European Physical Journal Plus, 133 (2018), 19.
    [22] A. K. Kassam and L. N. Trefethen, Fourth-order time stepping for stiff PDEs, SIAM Journal on Scientific Computing, 26 (2005), 1214-1233.  doi: 10.1137/S1064827502410633.
    [23] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Netherlands, 2006.
    [24] F. LiuP. ZhangV. Anh and I. Turner, A fractional-order implicit difference approximation for the space-time fractional diffusion equation, ANZIAM J., 47 (2006), 48-68.  doi: 10.1017/S1446181100009998.
    [25] Q. LiuF. LiuY. GuP. ZhuangJ. Chen and I. Turner, A meshless method based on Point Interpolation Method (PIM) for the space fractional diffusion equation, Applied Mathematics and Computation, 256 (2015), 930-938.  doi: 10.1016/j.amc.2015.01.092.
    [26] Y. Luchko and R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Vietnamica, 24 (1999), 207-233. 
    [27] C. MiaoB. Yuan and B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations, Nonlinear Analysis, 68 (2008), 461-484.  doi: 10.1016/j.na.2006.11.011.
    [28] S. Momani and Z. Odibat, A novel method for nonlinear fractional partial differential equations: Combination of DTM and generalized Taylor's Formula, Journal of Computational and Applied Mathematics, 220 (2008), 85-95.  doi: 10.1016/j.cam.2007.07.033.
    [29] H. Munthe-Kaas, High order Runge-Kutta methods on manifolds, Applied Numerical Mathematics, 29 (1999), 115-127.  doi: 10.1016/S0168-9274(98)00030-0.
    [30] A. C. Newell and J. A. Whitehead, Finite bandwidth, finite amplitude convection, Journal of Fluid Mechanics, 38 (1969), 279-303.  doi: 10.1017/S0022112069000176.
    [31] Z. Odibat and S. Momani, Numerical methods for nonlinear partial differential equations of fractional order, Applied Mathematical Modeling, 32 (2008), 28-39.  doi: 10.1016/j.apm.2006.10.025.
    [32] K. M. Owolabi, Robust IMEX schemes for solving two-dimensional reaction-diffusion models, International Journal of Nonlinear Science and Numerical Simulations, 16 (2015), 271-284.  doi: 10.1515/ijnsns-2015-0004.
    [33] K. M. Owolabi and K. C. Patidar, Existence and permanence in a diffusive KiSS model with robust numerical simulations, International Journal of Differential Equations, 2015 (2015), Art. ID 485860, 8 pp. doi: 10.1155/2015/485860.
    [34] K. M. Owolabi and K. C. Patidar, Numerical simulations of multicomponent ecological models with adaptive methods, Theoretical Biology and Medical Modelling, 13 (2016), p1. doi: 10.1186/s12976-016-0027-4.
    [35] K. M. Owolabi and K. C. Patidar, Effect of spatial configuration of an extended nonlinear Kierstead Slobodkin reaction transport model with adaptive numerical scheme, Springer Plus, 5 (2016), 303. doi: 10.1186/s40064-016-1941-y.
    [36] K. M. Owolabi, Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Communications in Nonlinear Science and Numerical Simulations, 44 (2017), 304-317.  doi: 10.1016/j.cnsns.2016.08.021.
    [37] K. M. Owolabi, Mathematical modelling and analysis of two-component system with Caputo fractional derivative order, Chaos, Solitons and Fractals, 103 (2017), 544-554.  doi: 10.1016/j.chaos.2017.07.013.
    [38] K. M. Owolabi, Numerical approach to fractional blow-up equations with Atangana-Baleanu derivative in Riemann-Liouville sense, Mathematical Modelling of Natural Phenomena, 13 (2018), Art. 7, 17 pp. doi: 10.1051/mmnp/2018006.
    [39] K. M. Owolabi and A. Atangana, Modelling and formation of spatiotemporal patterns of fractional predation system in subdiffusion and superdiffusion scenarios, The European physical Journal Plus, 133 (2018), 43. doi: 10.1140/epjp/i2018-11886-2.
    [40] K. M. Owolabi, Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative, The European physical Journal Plus, 133 (2018), 15. doi: 10.1140/epjp/i2018-11863-9.
    [41] K. M. Owolabi, Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator, The European Physical Journal Plus, 133 (2018), 98. doi: 10.1140/epjp/i2018-11951-x.
    [42] K. M. Owolabi and A. Atangana, Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations, Chaos, Solitons and Fractals, 111 (2018), 119-127.  doi: 10.1016/j.chaos.2018.04.019.
    [43] E. Pindza and K. M. Owolabi, Fourier spectral method for higher order space fractional reaction-diffusion equations, Communications in Nonlinear Science and Numerical Simulation, 40 (2016), 112-128.  doi: 10.1016/j.cnsns.2016.04.020.
    [44] I. PodlubnyFractional Differential Equations, Academic Press, New York, 1999. 
    [45] X. Pu and B. Guo, Well-posedness and dynamics for the fractional Ginzburg-Landau equation, Applicable Analysis, 92 (2013), 318-334.  doi: 10.1080/00036811.2011.614601.
    [46] Yu. A. Rossikhin and M. V. Shitikova., Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev., 50 (1997), 15-67.  doi: 10.1115/1.3101682.
    [47] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, New York, 1993.
    [48] E. Sousa, Numerical approximations for fractional diffusion equations via splines, Computers and Mathematics with Applications, 62 (2011), 938-944.  doi: 10.1016/j.camwa.2011.04.015.
    [49] K. Stewartson and J. T. Stuart, A non-linear instability theory for a wave system in plane Poiseuille flow, Journal of Fluid Mechanics, 48 (1971), 529-545.  doi: 10.1017/S0022112071001733.
    [50] J. Wu, Generalized MHD equations, Journal of Differential Equations, 195 (2003), 284-312.  doi: 10.1016/j.jde.2003.07.007.
    [51] F. ZengF. LiuC. LiK. BurrageI. Turner and V. Anh, A Crank-Nicolson ADI spectral method for a two-dimensional riesz space fractional nonlinear reaction-diffusion equation, SIAM Journal on Numerical Analysis, 52 (2014), 2599-2622.  doi: 10.1137/130934192.
    [52] F. Zeng, C. Li, F. Liu and I. Turner, Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy, SIAM Journal on Scientific Computing, 37 (2015), A55–A78. doi: 10.1137/14096390X.
    [53] Z. Zhai, Well-posedness for fractional Navier-Stokes equations in critical spaces close to $B_{\infty, \infty}^{-(2\beta-1)(R^n)}$, Dynamics of PDE, 7 (2010), 25-44.  doi: 10.4310/DPDE.2010.v7.n1.a2.
    [54] Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Annales de l'Institut Henri Poincaré, 24 (2007), 491-505.  doi: 10.1016/j.anihpc.2006.03.014.
    [55] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, New Jersey, 2014. doi: 10.1142/9069.
  • 加载中



Article Metrics

HTML views(1180) PDF downloads(522) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint