• Previous Article
    European option valuation under the Bates PIDE in finance: A numerical implementation of the Gaussian scheme
  • DCDS-S Home
  • This Issue
  • Next Article
    Mittag-Leffler input stability of fractional differential equations and its applications
March  2020, 13(3): 881-888. doi: 10.3934/dcdss.2020051

Inclusion of fading memory to Banister model of changes in physical condition

1. 

Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 28095, Riyadh 11437, Saudi Arabia

2. 

Department of mathematics, AMITY School of Engineering and Technology, AMITY University Rajasthan, Jaipur -302022, India

3. 

Nature Science Department, Community College of Riyadh, King Saud University, P.O. Box 28095, Riyadh 11437, Saudi Arabia

4. 

Department of Mathematics, Faculty of Science, Fayoum University, Fayoum, Egypt

* Corresponding author: Ravi Shanker Dubey

Received  May 2018 Revised  June 2018 Published  March 2019

Fund Project: The authors would like to extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group No (RG-1438-086).

We introduced the fading memory effect to the model portraying the prediction in physical condition. The classical model is known as the Banister model. We presented the existence and uniqueness conditions of the exact solutions of this model using three different memory including the bad memory induces by the power law and the good memories induced by exponential decay law and the Mittag-Leffler law. We derived the exact solutions using the Laplace transform for the non-delay version.

Citation: Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051
References:
[1]

A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Fractals, 102 (2017), 396-406.  doi: 10.1016/j.chaos.2017.04.027.  Google Scholar

[2]

A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A: Statistical Mechanics and its Applications, 505 (2018), 688-706.  doi: 10.1016/j.physa.2018.03.056.  Google Scholar

[3]

A. Atangana and B. Dumitru, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.   Google Scholar

[4]

A. Atangana and J. F. Gmez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018), 166. Google Scholar

[5]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.  Google Scholar

[6]

T. Busso, Variable dose-response relationship between exercise training and performance, Med Sci Sports Exerc, 35 1188–1195. Google Scholar

[7]

T. Calvert, E. Banister, M. Savage and T. Bach, A systems model of the effects of training on physical performance, IEEE Transac-tions on Systems, Man and Cybernetics SMC-6(2), (1976), 94–102. Google Scholar

[8]

S. Eassom, Critical reflections on olympic ideology, Ontario: The Centre for Olympic Studies, (1994), 120–123. Google Scholar

[9]

A. Finn, Running with the Kenyans. p. chapter 2. Mangan, J A (2014), Sport in Latin American Society: Past and Present, (2012), 93. Google Scholar

[10]

G. Fulton and A. Bairner, Sport, space and national identity in ireland: The GAA, croke park and rule 42, Policy, 11 (2007), 55-74.   Google Scholar

[11]

L. K. ErvinA. A. Tateishi and R. V. Haroldo, The role of fractional time-derivative operators on anomalous diffusion, Frontiers in Physics, 5 (2017), 1-9.  doi: 10.3389/fphy.2017.00052.  Google Scholar

[12]

J. A. T. Machado and A. M. Lopes, On the mathematical modeling of soccer dynamics, Communications in Nonlinear Science and Numerical Simulation, 53 (2017), 142-153.  doi: 10.1016/j.cnsns.2017.04.024.  Google Scholar

[13]

R. H. MortonJ. R. Fitz-Clarke and E. W. Banister, Modeling human performance in running, J Appl Physiol, 69 (1990), 1171-1177.   Google Scholar

[14]

K. M. Owolabi and A. Atangana, Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense, Fractals, 99 (2017), 171-179.  doi: 10.1016/j.chaos.2017.04.008.  Google Scholar

[15]

T. W. CalvertE. W. BanisterM. V. Savage and T. Bach, A systems model of the effects of training on physical performance, IEEE Transactions on Systems, Man, and Cybernetics, 6 (1976), 94-102.   Google Scholar

[16]

H. Yépez-Martínez and J. F. Gómez-Aguilar, Numerical and analytical solutions of nonlinear differential equations involving fractional operators with power and Mittag-Leffler kernel, Mathematical Modelling of Natural Phenomena, 13 (2018), Art. 13, 17 pp. doi: 10.1051/mmnp/2018002.  Google Scholar

show all references

References:
[1]

A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Fractals, 102 (2017), 396-406.  doi: 10.1016/j.chaos.2017.04.027.  Google Scholar

[2]

A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A: Statistical Mechanics and its Applications, 505 (2018), 688-706.  doi: 10.1016/j.physa.2018.03.056.  Google Scholar

[3]

A. Atangana and B. Dumitru, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.   Google Scholar

[4]

A. Atangana and J. F. Gmez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018), 166. Google Scholar

[5]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.  Google Scholar

[6]

T. Busso, Variable dose-response relationship between exercise training and performance, Med Sci Sports Exerc, 35 1188–1195. Google Scholar

[7]

T. Calvert, E. Banister, M. Savage and T. Bach, A systems model of the effects of training on physical performance, IEEE Transac-tions on Systems, Man and Cybernetics SMC-6(2), (1976), 94–102. Google Scholar

[8]

S. Eassom, Critical reflections on olympic ideology, Ontario: The Centre for Olympic Studies, (1994), 120–123. Google Scholar

[9]

A. Finn, Running with the Kenyans. p. chapter 2. Mangan, J A (2014), Sport in Latin American Society: Past and Present, (2012), 93. Google Scholar

[10]

G. Fulton and A. Bairner, Sport, space and national identity in ireland: The GAA, croke park and rule 42, Policy, 11 (2007), 55-74.   Google Scholar

[11]

L. K. ErvinA. A. Tateishi and R. V. Haroldo, The role of fractional time-derivative operators on anomalous diffusion, Frontiers in Physics, 5 (2017), 1-9.  doi: 10.3389/fphy.2017.00052.  Google Scholar

[12]

J. A. T. Machado and A. M. Lopes, On the mathematical modeling of soccer dynamics, Communications in Nonlinear Science and Numerical Simulation, 53 (2017), 142-153.  doi: 10.1016/j.cnsns.2017.04.024.  Google Scholar

[13]

R. H. MortonJ. R. Fitz-Clarke and E. W. Banister, Modeling human performance in running, J Appl Physiol, 69 (1990), 1171-1177.   Google Scholar

[14]

K. M. Owolabi and A. Atangana, Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense, Fractals, 99 (2017), 171-179.  doi: 10.1016/j.chaos.2017.04.008.  Google Scholar

[15]

T. W. CalvertE. W. BanisterM. V. Savage and T. Bach, A systems model of the effects of training on physical performance, IEEE Transactions on Systems, Man, and Cybernetics, 6 (1976), 94-102.   Google Scholar

[16]

H. Yépez-Martínez and J. F. Gómez-Aguilar, Numerical and analytical solutions of nonlinear differential equations involving fractional operators with power and Mittag-Leffler kernel, Mathematical Modelling of Natural Phenomena, 13 (2018), Art. 13, 17 pp. doi: 10.1051/mmnp/2018002.  Google Scholar

[1]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[2]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[3]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[4]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[5]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[6]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[7]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[8]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[9]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[10]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[11]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[12]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[13]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[14]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[15]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[16]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[17]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[18]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[19]

Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021012

[20]

M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (188)
  • HTML views (563)
  • Cited by (0)

[Back to Top]