[1]
|
M. L. Abell and J. P. Braselton, Differential Equations with Mathematica, Fourth Edition, Academic Press, USA, 2016.
|
[2]
|
W. Allegretto, Y. Lin and N. Yan, A posteriori error analysis for FEM of American options, Discrete Contin. Dyn. Syst., Ser. B, 6 (2006), 957-978.
doi: 10.3934/dcdsb.2006.6.957.
|
[3]
|
M. Balajewicz and J. Toivanen, Reduced order models for pricing European and American optionsunder stochastic volatility and jump–diffusion models, J. Comput. Sci., 20 (2017), 198-204.
doi: 10.1016/j.jocs.2017.01.004.
|
[4]
|
L. V. Ballestra and C. Sgarra, The evaluation of American options in a stochastic volatility model with jumps: an efficient finite element approach, Comput. Math. Appl., 60 (2010), 1571-1590.
doi: 10.1016/j.camwa.2010.06.040.
|
[5]
|
L. V. Ballestra and L. Cecere, A fast numerical method to price American options under the Bates model, Comput. Math. Appl., 72 (2016), 1305-1319.
doi: 10.1016/j.camwa.2016.06.041.
|
[6]
|
D. Bates, Jumps and stochastic volatility: The exchange rate processes implicit in Deutsche mark options, Rev. Fin. Studies, 9 (1996), 69-107.
doi: 10.1093/rfs/9.1.69.
|
[7]
|
V. Bayona, M. Moscoso and M. Kindelan, Gaussian RBF–FD weights and its corresponding local truncation errors, Eng. Anal. Bound. Elem., 36 (2012), 1361-1369.
doi: 10.1016/j.enganabound.2012.03.010.
|
[8]
|
F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637-654.
doi: 10.1086/260062.
|
[9]
|
M. Briani, C. La Chioma and R. Natalini, Convergence of numerical schemes for viscosity solutions to integro–differential degenerate parabolic problems arising in financial theory, Numer. Math., 98 (2004), 607-646.
doi: 10.1007/s00211-004-0530-0.
|
[10]
|
M. Caliari, P. Kandolf, A. Ostermann and S. Rainer, Comparison of software for computing the action of the matrix exponential, BIT, 54 (2014), 113-128.
doi: 10.1007/s10543-013-0446-0.
|
[11]
|
S. S. Clift and P. A. Forsyth, Numerical solution of two asset jump diffusion models for option valuation, Appl. Numer. Math., 58 (2008), 743-782.
doi: 10.1016/j.apnum.2007.02.005.
|
[12]
|
Y. d'Halluin, P. A. Forsyth and K. R. Vetzal, Robust numerical methods for contingent claims under jump diffusion processes, IMA J. Numer. Anal., 25 (2005), 87-112.
doi: 10.1093/imanum/drh011.
|
[13]
|
E. Ekström and J. Tysk, The Black–Scholes equation in stochastic volatility models, J. Math. Anal. Appl., 368 (2010), 498-507.
doi: 10.1016/j.jmaa.2010.04.014.
|
[14]
|
M. Fakharany, V. N. Egorova and R. Company, Numerical valuation of two–asset options under jump diffusion models using Gauss–Hermite quadrature, J. Comput. Appl. Math., 330 (2018), 822-834.
doi: 10.1016/j.cam.2017.03.032.
|
[15]
|
G. E. Fasshauer, Meshfree Approximation Methods with MATLAB, World Scientific Publishing Co., Singapore, 2007.
doi: 10.1142/6437.
|
[16]
|
R. Feng and J. Duan, High accurate finite differences based on RBF interpolation and its application in solving differential equations, J. Sci. Comput., 76 (2018), 1785-1812.
doi: 10.1007/s10915-018-0684-z.
|
[17]
|
P. G. Giribone and S. Ligato, Option pricing via radial basis functions: Performance comparison with traditional numerical integration scheme and parameters choice for a reliable pricing, Int. J. Financ. Eng., 2 (2015), 1550018, 30 pp.
doi: 10.1142/S2424786315500188.
|
[18]
|
W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer, Berlin, 2012.
doi: 10.1007/978-3-642-28027-6.
|
[19]
|
R. L. Hardy, Theory and applications of the multiquadric–biharmonic method: 20 years of discovery, Comput. Math. Appl., 19 (1990), 163-208.
doi: 10.1016/0898-1221(90)90272-L.
|
[20]
|
S. L. Heston, A closed–form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327-343.
doi: 10.1093/rfs/6.2.327.
|
[21]
|
N. J. Higham, Functions of Matrices: Theory and Computation, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.
doi: 10.1137/1.9780898717778.
|
[22]
|
K. J. in 't Hout and S. Foulon, ADI finite difference schemes for option pricing in the Heston model with correlation, Int. J. Numer. Anal. Modeling, 7 (2010), 303-320.
|
[23]
|
T. Kluge, Pricing Derivatives in Stochastic Volatility Models Using the Finite Difference Method, Dipl. thesis, TU Chemnitz, 2002.
|
[24]
|
T. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), 455-500.
doi: 10.1137/07070111X.
|
[25]
|
S. Kou, A jump diffusion model for option pricing, Management Sci., 48 (2002), 1086-1101.
|
[26]
|
D. C. Lesmana and S. Wang, A numerical scheme for pricing American options with transaction costs under a jump diffusion process, J. Ind. Manag. Optim., 13 (2017), 1793-1813.
doi: 10.3934/jimo.2017019.
|
[27]
|
J. Loffeld and M. Tokman, Comparative performance of exponential, implicit, and explicit integrators for stiff systems of ODEs, J. Comput. Appl. Math., 241 (2013), 45-67.
doi: 10.1016/j.cam.2012.09.038.
|
[28]
|
M. D. Marcozzi, S. Choi and C. S. Chen, On the use of boundary conditions for variational formulations arising in financial mathematics, Appl. Math. Comput., 124 (2001), 197-214.
doi: 10.1016/S0096-3003(00)00087-4.
|
[29]
|
A. Mayo, Methods for the rapid solution of the pricing PIDEs in exponential and Merton models, J. Comput. Appl. Math., 222 (2008), 128-143.
doi: 10.1016/j.cam.2007.10.017.
|
[30]
|
R. Merton, Option pricing when underlying stock returns are discontinuous, J. Financ. Ecom., 3 (1976), 125-144.
doi: 10.1016/0304-405X(76)90022-2.
|
[31]
|
G. H. Meyer, The Time–Discrete Method of Lines for Options and Bonds, A PDE Approach, World Scientific Publishing, USA, 2015.
|
[32]
|
C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty–five years later, SIAM Rev., 45 (2003), 3-49.
doi: 10.1137/S00361445024180.
|
[33]
|
M. Mureşan, Introduction to Mathematica with Applications, Springer, Switzerland, 2017.
|
[34]
|
H.–K. Pang and H.–W. Sun, Fast exponential time integration for pricing options in stochastic volatility jump diffusion models, East Asian J. Appl. Math., 4 (2014), 52-68.
doi: 10.4208/eajam.280313.061013a.
|
[35]
|
N. Rambeerich, D. Tangman, A. Gopaul and M. Bhuruth, Exponential time integration for fast finite element solutions of some financial engineering problems, J. Comput. Appl. Math., 224 (2009), 668-678.
doi: 10.1016/j.cam.2008.05.047.
|
[36]
|
S. Salmi, J. Toivanen and L. von Sydow, An IMEX–scheme for pricing options under stochastic volatility models with jumps, SIAM J. Sci. Comput., 36 (2014), 817-834.
doi: 10.1137/130924905.
|
[37]
|
L. O. Scott, Pricing stock options in a jump–diffusion model with stochastic volatility and interest rates: Applications of Fourier inversion methods, Math. Finance, 7 (1997), 413-426.
doi: 10.1111/1467-9965.00039.
|
[38]
|
M. Sofroniou and R. Knapp, Advanced Numerical Differential Equation Solving in Mathematica, Wolfram Mathematica, Tutorial Collection, USA, 2008.
|
[39]
|
V. Stolbunov and P. B. Nair, Sparse radial basis function approximation with spatially variable shape parameters, Appl. Math. Comput., 330 (2018), 170-184.
doi: 10.1016/j.amc.2018.02.001.
|
[40]
|
D. Tangman, A. Gopaul and M. Bhuruth, Exponential time integration and Chebychev discretisation schemes for fast pricing of options, Appl. Numer. Math., 58 (2008), 1309-1319.
doi: 10.1016/j.apnum.2007.07.005.
|
[41]
|
I. Tolstykh, On using RBF–based differencing formulas for unstructured and mixed structured–unstructured grid calculations, Proc. 16th IMACS World Congress, 228 (2000), 4606-4624.
|
[42]
|
M. Trott, The Mathematica Guidebook for Numerics, Springer, New York, NY, USA, 2006.
doi: 10.1007/0-387-28814-7.
|
[43]
|
C. Van Loan, Computing integrals involving the matrix exponential, IEEE Trans. Autom. Control, 23 (1978), 395-404.
doi: 10.1109/TAC.1978.1101743.
|
[44]
|
L. von Sydow, J. Toivanen and C. Zhang, Adaptive finite differences and IMEX time–stepping to price options under Bates model, Int. J. Comput. Math., 92 (2015), 2515-2529.
doi: 10.1080/00207160.2015.1072173.
|