Article Contents
Article Contents

# A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative

• In the present paper, we explore the dynamics of fractional tuberculosis model with Atangana-Baleanu (A-B) derivative. The number of confirmed notified cases reported by national tuberculosis control program (NTP) Khyber Pakhtunkhwa, Pakistan, since 2002 to 2017 are used for our analysis and estimation of the model parameters. Initially, the essential properties of the model are presented. We prove the existence of the solution through fixed-point theory. Then, we show the uniqueness of the solution. Modified Adams-Bashforth technique is used to obtain the numerical solution of the fractional model. We obtain numerical results with different values of the fractional order parameters to show the importance of the newly proposed derivative, which provides useful information about the TB dynamics and its control.

Mathematics Subject Classification: Primary: 34A08, 34D23; Secondary: 34Kxx, 34A08.

 Citation:

• Figure 1.  Number of TB infective cases in Khyber Pakhtunkhwa, Pakistan

Figure 2.  Data fitting (red solid curve) of the number of cases using model (6), for TB Khyber Pakhtunkhwa, Pakistan, since 2002-2017

Figure 3.  Simulations of the model (6), (a-e) and total TB infected individuals via A-B derivative (f), for σ = 1

Figure 4.  Simulations of TB model (6), (a-e) and total TB infected individuals via A-B derivative (f), for σ = 0.95

Figure 5.  Simulations of TB model (6), (a-e) and total TB infected individuals via A-B derivative (f), for $\sigma = 0.90$

Figure 6.  Simulations of TB model (6), (a-e) and total TB infected individuals via A-B derivative for (f), σ = 0.85

Figure 7.  Simulations of TB model (6), (a-e) and total TB infected individuals via A-B derivative (f), for $\sigma = 0.80$

Table 1.  Estimated parameters for the TB model (6)

 Parameter Description Baseline value Reference $\Lambda$ Recruitment rate 450,862.20088626 Estimated $\beta$ Transmission rate 0.5433 Fitted $\alpha$ Moving rate from $T$ to $R$ 0.3968 Fitted $\gamma$ Progression rate from $I$ to $T$ 0.2873 Fitted $\mu$ Natural death rate 1/67.7 [29] $\sigma_1$ Disease induced death rate of infected individuals 0.2202 Fitted $\sigma_2$ Disease induced death rate in $T$ 0.0550 Fitted $\delta$ Rate at which treated individuals leave the $T$ 1.1996 Fitted $\eta$ Rate of treatment failure 0.1500 Fitted $\epsilon$ Rate of progression from $L$ to $I$ 0.2007 Fitted
•  [1] World Health Organization Media Centre. Available, https://www.who.int/en/news-room/fact-sheets/detail/tuberculosis. Accessed 2018. [2] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. [3] A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, App. Math. and Comp., 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012. [4] A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A: Statistical Mechanics and its Applications, 505 (2018), 688-706.  doi: 10.1016/j.physa.2018.03.056. [5] A. Atangana and J. F. G Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The Eur. Phy. Jour. Plus, 133 (2018), 166.  doi: 10.1140/epjp/i2018-12021-3. [6] O. J. J. Algahtani, Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model, Fractals, 89 (2016), 552-559.  doi: 10.1016/j.chaos.2016.03.026. [7] B. S. T. Alkahtani, Chua's circuit model with Atangana-Baleanu derivative with fractional order, Fractals, 89 (2016), 547-551. [8] B. S. T. Alkahtani, A. Atangana and I. Koca, Novel analysis of the fractional Zika model using the Adams type predictor-corrector rule for non-singular and non-local fractional operators, Jour. Nonl. Sci. Appl., 10 (2017), 3191-3200.  doi: 10.22436/jnsa.010.06.32. [9] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl, 2 (2015), 1-13. [10] C. C. Chavez and Z. Feng, To treat or not to treat: the case of tuberculosis, Jour. Math. Bio., 35 (1997), 629-656.  doi: 10.1007/s002850050069. [11] P. V. D. Driessche and J. Watmough, Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Bios., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6. [12] Z. Feng and  C. C. Chavez,  Mathematical Models for the Disease Dynamics of Tubeculosis, Gordon and Breach Science Publishers, London, 1998. [13] M. A. Khan, S. Ullah and M. F. Farooq, A new fractional model for tuberculosis with relapse via Atangana-Baleanu derivative, Chao. Solit. Frac., 116 (2018), 227-238.  doi: 10.1016/j.chaos.2018.09.039. [14] S. Kim, A. Aurelio and E. Jung, Mathematical model and intervention strategies for mitigating tuberculosis in the Philippines, J. Theoret. Biol., 443 (2018), 100-112.  doi: 10.1016/j.jtbi.2018.01.026. [15] I. Koca, Modelling the spread of Ebola virus with Atangana-Baleanu fractional operators, The Eur. Phy. Jour. Plus, 133 (2018), 100.  doi: 10.1140/epjp/i2018-11949-4. [16] J. Liu and T. Zhang, Global stability for a tuberculosis model, Math. Comp. Modelling, 54 (2011), 836-845.  doi: 10.1016/j.mcm.2011.03.033. [17] L. Liu, X. Q. Zhao and Y. Zhou, A tuberculosis model with seasonality, Chao. Soliton. Fract., 72 (2010), 931-952.  doi: 10.1007/s11538-009-9477-8. [18] S. C Revelle, R. W. Lynn and F. Feldmann, Mathematical models for the economic allocation of tuberculosis control activities in developing nations, American Review of Respiratory Disease, 96 (1967), 893-909. [19] S. G. Samko, A. A. Kilbas, I. O. Marichev and others, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, 1993. [20] J. Singh J,  D. Kumar,  M. A. Qurashi and  D. Baleanu,  Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic press, 1999. [21] M. Toufik and A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, Chaos Solitons Fract., 132 (2017), 1-16. [22] M. J. Trauer, T. J. McBryde and S. E. Denholmand, Construction of a mathematical model for tuberculosis transmission in highly endemic regions of the Asia-Pacific, J. of Theo. Bio., 385 (2014), 74-84. [23] S. Ullah, M. A. Khan and M. F. Farooq, A new fractional model for the dynamics of Hepatitis B virus using Caputo–Fabrizio derivative, The Eur. Phy. Jour. Plus, 133 (2018), 237.  doi: 10.1140/epjp/i2018-12072-4. [24] H. Waaler, A. Geser and S. Andersen, The use of mathematical models in the study of the epidemiology of tuberculosis, American J. of Public Health and the Nations Health, 52 (1962), 1002-1013. [25] S. R. Wallis, Mathematical models of tuberculosis reactivation and relapse, Front. in Microbiol., 7 (2016), 1-7.  doi: 10.3389/fmicb.2016.00669. [26] Y. Yang, J. Li, Z. Ma and L. Liu, Global stability of two models with incomplete treatment for tuberculosis, Fractals, 43 (2010), 79-85.  doi: 10.1016/j.chaos.2010.09.002. [27] J. Zhang, Y. Li and X. Zhang, Mathematical modeling of tuberculosis data of China, J. of Theor. Bio., 365 (2015), 159-163.  doi: 10.1016/j.jtbi.2014.10.019. [28] National TB Control Program Pakistan (NTP)., http://www.ntp.gov.pk/webdatabase.php. [29] Pakistan Bureau of Statistics. Pakistans 6th census: Population of major cities 662 census, http://www.pbscensus.gov.pk/.

Figures(7)

Tables(1)