doi: 10.3934/dcdss.2020056

A fractional order HBV model with hospitalization

1. 

Department of Mathematics, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan

2. 

Department of Mathematics, City University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan

3. 

Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad, Khyber Pakhtunkhwa, Pakistan

* Corresponding author: altafdir@gmail.com

Received  April 2018 Revised  June 2018 Published  March 2019

Hepatitis B is a viral infection that can cause both acute and chronic disease and mainly attacks the liver. The present paper describes the dynamics of HBV with hospitalization. Due to the fatal nature of this disease, it is necessary to formulate a new mathematical model in order to reduce the burden of HBV. Therefore, we formulate a new HBV model with fractional order derivative. The fractional order model is formulated in Caputo sense. Two equilibria for the model exist: the disease-free and the endemic equilibriums. It is shown, that the disease-free equilibrium is both locally and globally asymptotically stable if $ \mathcal{R}_0<1 $ for any $ \alpha\in(0,1) $. The sensitivity analysis of the model parameters are calculated and their results are depicted. The numerical results for the stability of the endemic equilibrium are presented. The complex dynamics of the disease can be best described by using the fractional derivative and this is illustrated through many graphical results.

Citation: Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Taza Gul, Fawad Hussain. A fractional order HBV model with hospitalization. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020056
References:
[1]

E. AhmedA. M. A. El-Sayed and H. A. A. El-Saka, On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, R ossler, Chua and Chen systems, Phy. Letters A, 385 (2006), 1-4. doi: 10.1016/j.physleta.2006.04.087. Google Scholar

[2]

M. AlquranK. Al-KhaledM. Ali and O. A. Arqub, Bifurcations of the time-fractional generalized coupled Hirota-Satsuma KdV system, Waves Wavelets and Fractals, 3 (2017), 31-39. doi: 10.1515/wwfaa-2017-0003. Google Scholar

[3]

A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 89 (2016), 763-769. Google Scholar

[4]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fract., 89 (2016), 447-454. doi: 10.1016/j.chaos.2016.02.012. Google Scholar

[5]

A. Atangana and J. F. Gmez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus., 133 (2018), 166. doi: 10.1140/epjp/i2018-12021-3. Google Scholar

[6]

R. P. BeasleyC. C. LinK. Y.WangF. J. HsiehL. Y. HwangC. E. StevensT. S. Sun and W. Szmuness, Hepatocellular carcinoma and hepatitis B virus, distributions, The Lancet, 2 (1981), 1129-1133. Google Scholar

[7]

World Health Organization Media Centre. Available: , 2017. Available from: http://www.who.int/mediacentre/factsheets/fs204/en/. Accessed 2018.Google Scholar

[8]

M. Caputo and M. Fabrizio, A new definition of fractional derivative with-out singular kernel, Progr. Fract. Differ. Appl., 85 (2015), 73-85. Google Scholar

[9]

F. F. F. ChenarY. N. Kyrychko and K. B. Blyuss, Mathematical model of immune response to hepatitis B, Jour. of Theo. Bio., 447 (2018), 98-110. doi: 10.1016/j.jtbi.2018.03.025. Google Scholar

[10]

D. CopotR. De KeyserE. DeromM. Ortigueira and C. M. Ionescu, Reducing bias in fractional order impedance estimation for lung function evaluation, Biomed. Signal Proc. and Cont., 39 (2018), 74-80. doi: 10.1016/j.bspc.2017.07.009. Google Scholar

[11]

H. DelavariD. Baleanu and J. Sadati, Stability analysis of Caputo fractional-order nonlinear systems revisited, Nonlinear Dyn., 67 (2012), 2433-2439. doi: 10.1007/s11071-011-0157-5. Google Scholar

[12]

K. Diethelm, A fractional calculus based model for the simulation of an outbreak of dengue fever, Non linear Dyn., 71 (2013), 613-619. doi: 10.1007/s11071-012-0475-2. Google Scholar

[13]

P. V. D. Driessche and J. Watmough, Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Bios., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[14]

M. A. KhanS. IslamM. Arif and Z. Haq, Transmission model of hepatitis B virus with the migration effect, Bio. Res. Int., 2013 (2013), 1-10. Google Scholar

[15]

M. A. KhanS. Islam and G. Zaman, Media coverage campaign in Hepatitis B transmission, App.math. and comp., 331 (2018), 378-393. doi: 10.1016/j.amc.2018.03.029. Google Scholar

[16]

Y. LiY. Q. Chen and I. Podlubny, Mittag Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45 (2009), 1965-1969. doi: 10.1016/j.automatica.2009.04.003. Google Scholar

[17]

R. M. LizzyK. Balachandran and J. J. Trujillo, Controllability of nonlinear stochastic fractional neutral systems with multiple time varying delays in control, Chao. Soliton. Fract., 102 (2017), 162-167. doi: 10.1016/j.chaos.2017.04.024. Google Scholar

[18]

J. PangJ. Cui and X. Zhou, Dynamical behavior of a hepatitis B virus transmission model with vaccination, Nat. Med., 265 (2010), 572-578. doi: 10.1016/j.jtbi.2010.05.038. Google Scholar

[19]

C. M. A. Pinto and A. R. M. Carvalho, Pinto CMA, Carvalho ARM. The HIV/TB coinfection severity in the presence of TB multi-drug resistant strains, Ecol. Complex, 32 (2017), 1-20. Google Scholar

[20] I. Podlubny, Fractional Differential Equations, Academic Press, 1999. Google Scholar
[21]

S. Sakulrang, E. J. Moore, S. Sungnul and A. Gaetano, A fractional differential equation model for continuous glucose monitoring data, Adv. Diff. Equ., 2017 (2017), Paper No. 150, 11 pp. doi: 10.1186/s13662-017-1207-1. Google Scholar

[22]

S. M. Salman and A. M. Yousef, On a fractional-order model for HBV infection with cure of infected cells, Jour. Egyp. Math. Soci., 25 (2017), 445-451. doi: 10.1016/j.joems.2017.06.003. Google Scholar

[23]

S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications, London: Gordon and Breach Science Publishers, 1993. doi: 10.1007/978-1-4612-0873-0. Google Scholar

[24]

C. W. Shepard and E. P. Simard, Hepatitis B virus infection: epidemiology and vaccination, Epid. Rev., 28 (2006), 112-125. doi: 10.1093/epirev/mxj009. Google Scholar

[25]

J. SinghD. KumarM. A. Qurashi and D. Baleanu, A novel numerical approach for a nonlinear fractional dynamical model of interpersonal and romantic relationships, Entropy, 19 (2017), 375-392. Google Scholar

[26]

J. Singh, D. Kumar, M. A. Qurashi and D. Baleanu, A new fractional model for giving up smoking dynamics, Adv. Diff. Equ., 2017 (2017), Paper No. 88, 16 pp. doi: 10.1186/s13662-017-1139-9. Google Scholar

[27]

S. ThornleyC. Bullen and M. Roberts, Hepatitis B in a high prevalence New Zealand population: A mathematical model applied to infection control policy, Nat. Med., 254 (2008), 599-603. doi: 10.1016/j.jtbi.2008.06.022. Google Scholar

[28]

C. Vargas-De-Leon, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simulat., 24 (2015), 75-85. doi: 10.1016/j.cnsns.2014.12.013. Google Scholar

[29]

S. Zhang and Y. Zhou, The analysis and application of an HBV model, Appl. Math. Modell., 36 (2012), 1302-1312. doi: 10.1016/j.apm.2011.07.087. Google Scholar

[30]

L. ZouW. Zhang and S. Ruan, Modeling the transmission dynamics and control of hepatitis B, Nat. Med., 262256 (2010), 330-338. doi: 10.1016/j.jtbi.2009.09.035. Google Scholar

show all references

References:
[1]

E. AhmedA. M. A. El-Sayed and H. A. A. El-Saka, On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, R ossler, Chua and Chen systems, Phy. Letters A, 385 (2006), 1-4. doi: 10.1016/j.physleta.2006.04.087. Google Scholar

[2]

M. AlquranK. Al-KhaledM. Ali and O. A. Arqub, Bifurcations of the time-fractional generalized coupled Hirota-Satsuma KdV system, Waves Wavelets and Fractals, 3 (2017), 31-39. doi: 10.1515/wwfaa-2017-0003. Google Scholar

[3]

A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 89 (2016), 763-769. Google Scholar

[4]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fract., 89 (2016), 447-454. doi: 10.1016/j.chaos.2016.02.012. Google Scholar

[5]

A. Atangana and J. F. Gmez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus., 133 (2018), 166. doi: 10.1140/epjp/i2018-12021-3. Google Scholar

[6]

R. P. BeasleyC. C. LinK. Y.WangF. J. HsiehL. Y. HwangC. E. StevensT. S. Sun and W. Szmuness, Hepatocellular carcinoma and hepatitis B virus, distributions, The Lancet, 2 (1981), 1129-1133. Google Scholar

[7]

World Health Organization Media Centre. Available: , 2017. Available from: http://www.who.int/mediacentre/factsheets/fs204/en/. Accessed 2018.Google Scholar

[8]

M. Caputo and M. Fabrizio, A new definition of fractional derivative with-out singular kernel, Progr. Fract. Differ. Appl., 85 (2015), 73-85. Google Scholar

[9]

F. F. F. ChenarY. N. Kyrychko and K. B. Blyuss, Mathematical model of immune response to hepatitis B, Jour. of Theo. Bio., 447 (2018), 98-110. doi: 10.1016/j.jtbi.2018.03.025. Google Scholar

[10]

D. CopotR. De KeyserE. DeromM. Ortigueira and C. M. Ionescu, Reducing bias in fractional order impedance estimation for lung function evaluation, Biomed. Signal Proc. and Cont., 39 (2018), 74-80. doi: 10.1016/j.bspc.2017.07.009. Google Scholar

[11]

H. DelavariD. Baleanu and J. Sadati, Stability analysis of Caputo fractional-order nonlinear systems revisited, Nonlinear Dyn., 67 (2012), 2433-2439. doi: 10.1007/s11071-011-0157-5. Google Scholar

[12]

K. Diethelm, A fractional calculus based model for the simulation of an outbreak of dengue fever, Non linear Dyn., 71 (2013), 613-619. doi: 10.1007/s11071-012-0475-2. Google Scholar

[13]

P. V. D. Driessche and J. Watmough, Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Bios., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[14]

M. A. KhanS. IslamM. Arif and Z. Haq, Transmission model of hepatitis B virus with the migration effect, Bio. Res. Int., 2013 (2013), 1-10. Google Scholar

[15]

M. A. KhanS. Islam and G. Zaman, Media coverage campaign in Hepatitis B transmission, App.math. and comp., 331 (2018), 378-393. doi: 10.1016/j.amc.2018.03.029. Google Scholar

[16]

Y. LiY. Q. Chen and I. Podlubny, Mittag Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45 (2009), 1965-1969. doi: 10.1016/j.automatica.2009.04.003. Google Scholar

[17]

R. M. LizzyK. Balachandran and J. J. Trujillo, Controllability of nonlinear stochastic fractional neutral systems with multiple time varying delays in control, Chao. Soliton. Fract., 102 (2017), 162-167. doi: 10.1016/j.chaos.2017.04.024. Google Scholar

[18]

J. PangJ. Cui and X. Zhou, Dynamical behavior of a hepatitis B virus transmission model with vaccination, Nat. Med., 265 (2010), 572-578. doi: 10.1016/j.jtbi.2010.05.038. Google Scholar

[19]

C. M. A. Pinto and A. R. M. Carvalho, Pinto CMA, Carvalho ARM. The HIV/TB coinfection severity in the presence of TB multi-drug resistant strains, Ecol. Complex, 32 (2017), 1-20. Google Scholar

[20] I. Podlubny, Fractional Differential Equations, Academic Press, 1999. Google Scholar
[21]

S. Sakulrang, E. J. Moore, S. Sungnul and A. Gaetano, A fractional differential equation model for continuous glucose monitoring data, Adv. Diff. Equ., 2017 (2017), Paper No. 150, 11 pp. doi: 10.1186/s13662-017-1207-1. Google Scholar

[22]

S. M. Salman and A. M. Yousef, On a fractional-order model for HBV infection with cure of infected cells, Jour. Egyp. Math. Soci., 25 (2017), 445-451. doi: 10.1016/j.joems.2017.06.003. Google Scholar

[23]

S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications, London: Gordon and Breach Science Publishers, 1993. doi: 10.1007/978-1-4612-0873-0. Google Scholar

[24]

C. W. Shepard and E. P. Simard, Hepatitis B virus infection: epidemiology and vaccination, Epid. Rev., 28 (2006), 112-125. doi: 10.1093/epirev/mxj009. Google Scholar

[25]

J. SinghD. KumarM. A. Qurashi and D. Baleanu, A novel numerical approach for a nonlinear fractional dynamical model of interpersonal and romantic relationships, Entropy, 19 (2017), 375-392. Google Scholar

[26]

J. Singh, D. Kumar, M. A. Qurashi and D. Baleanu, A new fractional model for giving up smoking dynamics, Adv. Diff. Equ., 2017 (2017), Paper No. 88, 16 pp. doi: 10.1186/s13662-017-1139-9. Google Scholar

[27]

S. ThornleyC. Bullen and M. Roberts, Hepatitis B in a high prevalence New Zealand population: A mathematical model applied to infection control policy, Nat. Med., 254 (2008), 599-603. doi: 10.1016/j.jtbi.2008.06.022. Google Scholar

[28]

C. Vargas-De-Leon, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simulat., 24 (2015), 75-85. doi: 10.1016/j.cnsns.2014.12.013. Google Scholar

[29]

S. Zhang and Y. Zhou, The analysis and application of an HBV model, Appl. Math. Modell., 36 (2012), 1302-1312. doi: 10.1016/j.apm.2011.07.087. Google Scholar

[30]

L. ZouW. Zhang and S. Ruan, Modeling the transmission dynamics and control of hepatitis B, Nat. Med., 262256 (2010), 330-338. doi: 10.1016/j.jtbi.2009.09.035. Google Scholar

Figure 1.  The effect of $ \delta $ and $ h_1 $ on $ \mathcal{R}_0 $
Figure 2.  Contour plot of $ \delta $ and $ h_1 $
Figure 3.  The effect of $ \delta $ and $ h_2 $ on $ \mathcal{R}_0 $
Figure 4.  Contour plot of $ \delta $ and $ h_2 $
Figure 5.  The effect of $ \mu $ and $ h_2 $ on $ \mathcal{R}_0 $
Figure 6.  Contour plot of $ \mu $ and $ h_2 $
Figure 7.  The effect of $ \mu $ and $ h_1 $ on $ \mathcal{R}_0 $
Figure 8.  Contour plot of $ \mu $ and $ h_1 $
Figure 9.  The plot shows the susceptible individuals when $\mathcal{R}_0 = 1.0248>1$ for different values of $\alpha$.
Figure 10.  The plot shows the exposed individuals when $\mathcal{R}_0 = 1.0248>1$ for different values of $\alpha$.
Figure 11.  The plot shows the acute individuals when $\mathcal{R}_0 = 1.0248>1$ for different values of $\alpha$.
Figure 12.  The plot shows the carrier individuals when $\mathcal{R}_0 = 1.0248>1$ for different values of $\alpha$.
Figure 13.  The plot shows the hospitalized individuals when $\mathcal{R}_0 = 1.0248>1$ for different values of $\alpha$.
Figure 14.  The plot shows the recovered individuals when $\mathcal{R}_0 = 1.0248>1$ for different values of $\alpha$.
Figure 15.  The plot shows the total number of infected individuals when $ \mathcal{R}_0 = 1.0248>1 $ for different values of $ \alpha $
Figure 16.  The plot shows the total number of infected individuals when $ \mathcal{R}_0 = 1.0248>1 $ for different values of $ \alpha $ and $ h_1 $
Figure 17.  The plot shows the total number of infected individuals when $\mathcal{R}_0 = 1.0248>1$ for different values of $\alpha$ and $h_2$.
Table 1.  Values of parameters used for numerical simulations
parameters description of parameter Values
$ b $ Birth rate 0.4
$ d $ Natural death rate 0.01
$ h_1 $ The acute individuals to be hospitalized 0.01
$ h_2 $ Flow rate from carrier class to the hospitalized class 0.01
$ \beta $ The transmission coefficient 0.0002
$ \delta $ Rate of flow from exposed to carrier 0.01
$ d_A $ mortality rate due to acute infection 0.001
$ d_C $ carrier individuals death rate 0.002
$ \gamma $ the rate by which acute individuals move to carries class 0.01
$ \xi $ The rate of recovery 0.02
$ \psi $ Un-immunized children born to carrier mothers 0.2
$ \mu $ Carriers infectiousness related to acute infection 0.2
parameters description of parameter Values
$ b $ Birth rate 0.4
$ d $ Natural death rate 0.01
$ h_1 $ The acute individuals to be hospitalized 0.01
$ h_2 $ Flow rate from carrier class to the hospitalized class 0.01
$ \beta $ The transmission coefficient 0.0002
$ \delta $ Rate of flow from exposed to carrier 0.01
$ d_A $ mortality rate due to acute infection 0.001
$ d_C $ carrier individuals death rate 0.002
$ \gamma $ the rate by which acute individuals move to carries class 0.01
$ \xi $ The rate of recovery 0.02
$ \psi $ Un-immunized children born to carrier mothers 0.2
$ \mu $ Carriers infectiousness related to acute infection 0.2
Table 2.  Sensitivity indices of $ \mathcal{R}_0 $ with respect to the model parameters
Parameter Sensitivity index
$ \beta $ +0.7165
$ \delta $ +0.5000
$ \gamma $ +0.3680
$ h_1 $ -0.0455
$ h_2 $ -0.3739
$ \mu $ +0.0161
$ \psi $ +0.8064
$ d_A $ -0.0454
$ d_C $ -0.0748
Parameter Sensitivity index
$ \beta $ +0.7165
$ \delta $ +0.5000
$ \gamma $ +0.3680
$ h_1 $ -0.0455
$ h_2 $ -0.3739
$ \mu $ +0.0161
$ \psi $ +0.8064
$ d_A $ -0.0454
$ d_C $ -0.0748
[1]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[2]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[3]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[4]

Ting Guo, Haihong Liu, Chenglin Xu, Fang Yan. Global stability of a diffusive and delayed HBV infection model with HBV DNA-containing capsids and general incidence rate. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4223-4242. doi: 10.3934/dcdsb.2018134

[5]

Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365

[6]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[7]

Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166

[8]

Praveen Kumar Gupta, Ajoy Dutta. Numerical solution with analysis of HIV/AIDS dynamics model with effect of fusion and cure rate. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019038

[9]

Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations & Control Theory, 2016, 5 (4) : 475-487. doi: 10.3934/eect.2016015

[10]

Boqing Dong, Wenjuan Wang, Jiahong Wu, Hui Zhang. Global regularity results for the climate model with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 211-229. doi: 10.3934/dcdsb.2018102

[11]

Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239

[12]

Alexandre Caboussat, Roland Glowinski. Numerical solution of a variational problem arising in stress analysis: The vector case. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1447-1472. doi: 10.3934/dcds.2010.27.1447

[13]

Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1393-1404. doi: 10.3934/dcdsb.2015.20.1393

[14]

Rodrigue Gnitchogna Batogna, Abdon Atangana. Generalised class of Time Fractional Black Scholes equation and numerical analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 435-445. doi: 10.3934/dcdss.2019028

[15]

Kolade M. Owolabi. Numerical analysis and pattern formation process for space-fractional superdiffusive systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 543-566. doi: 10.3934/dcdss.2019036

[16]

Jacopo De Simoi. Stability and instability results in a model of Fermi acceleration. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 719-750. doi: 10.3934/dcds.2009.25.719

[17]

Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1035-1059. doi: 10.3934/mbe.2011.8.1035

[18]

Jyoti Mishra. Analysis of the Fitzhugh Nagumo model with a new numerical scheme. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 781-795. doi: 10.3934/dcdss.2020044

[19]

Elena Bonetti, Cecilia Cavaterra, Francesco Freddi, Maurizio Grasselli, Roberto Natalini. A nonlinear model for marble sulphation including surface rugosity: Theoretical and numerical results. Communications on Pure & Applied Analysis, 2019, 18 (2) : 977-998. doi: 10.3934/cpaa.2019048

[20]

Yu-Hsien Chang, Guo-Chin Jau. The behavior of the solution for a mathematical model for analysis of the cell cycle. Communications on Pure & Applied Analysis, 2006, 5 (4) : 779-792. doi: 10.3934/cpaa.2006.5.779

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (113)
  • HTML views (788)
  • Cited by (0)

[Back to Top]