[1]
|
World Health Organization Media Centre. Available: , Available from: http://apps.who.int/iris/bitstream/10665/136607/1/ccsbrief_pak_en.pdf.Accessed2016.
|
[2]
|
T. Abdeljawad and D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, J. Report. Math. Phy., 80 (2017), 11-27.
doi: 10.1016/S0034-4877(17)30059-9.
|
[3]
|
T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Phy. A: Stat. Mech. Appl., 313 (2017), 1-12.
doi: 10.1186/s13662-017-1285-0.
|
[4]
|
T. Abdeljawad, Q. M. Al-Mdallal and M. A. Hajji, Arbitrary order fractional difference operators with discrete exponential kernels and applications, Dis. Dyn. Nat. Soci., 2017 (2017), Art. ID 4149320, 8 pp.
doi: 10.1155/2017/4149320.
|
[5]
|
T. Abdeljawad and D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equ., 78 (2017), 1-9.
doi: 10.1186/s13662-017-1126-1.
|
[6]
|
T. Abdeljawad and Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwalls inequality, J. Comp. App. Math., 339 (2018), 218-230.
doi: 10.1016/j.cam.2017.10.021.
|
[7]
|
T. Abdeljawad and and F. Madjidi, Lyapunov type inequalities for fractional difference operators with discrete Mittag-Leffler kernels of order $2<a<5/2$, J. Spec. Top., 226 (2017), 3355-3368.
|
[8]
|
T. Abdeljawad and D. Baleanu, Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel, Chao. Solit. Frac., 102 (2017), 106-110.
doi: 10.1016/j.chaos.2017.04.006.
|
[9]
|
T. Abdeljawad and D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl. 10 (2017), 1098–1107.
doi: 10.22436/jnsa.010.03.20.
|
[10]
|
P. Agarwal, et al., Fractional differential equations for the generalized MittagLeffler function, Adv. Diff. Equa., 2018 (2018), 58.
|
[11]
|
J. F. G. Aguilar, Fundamental solutions to electrical circuits of non-integer order via fractional derivatives with and without singular kernels, Eur. Phys. J. Plus, 133 (2018), 1-20.
|
[12]
|
M. Q. Al-Mdallal, S. Ahmed and A. Omer, Fractional-order Legendre-collocation method for solving fractional initial value problems, Appl. Math. Comp., 321 (2018), 74-84.
doi: 10.1016/j.amc.2017.10.012.
|
[13]
|
A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769.
doi: 10.2298/TSCI160111018A.
|
[14]
|
A. Atangana and J. F. G Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The Eur. Phy. Jour. Plus, 133 (2018), 166.
doi: 10.1140/epjp/i2018-12021-3.
|
[15]
|
A. Atangana and K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Phenom., 13 (218), Art. 3, 21 pp.
doi: 10.2307/2152750.
|
[16]
|
M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl, 2 (2015), 1-13.
|
[17]
|
C. C. Chavez and Z. Feng, To treat or not to treat: the case o tuberculosis, Jour. Math. bio., 35 (1997), 629-656.
doi: 10.1007/s002850050069.
|
[18]
|
P. V. D. Driessche and J. Watmough, Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Bios., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.
|
[19]
|
A. O. Egonmwan and D. Okuonghae, Analysis of a mathematical model for tuberculosis with diagnosis, J. Appl. Math. Comput., (2018), 1–34.
doi: 10.1007/s12190-018-1172-1.
|
[20]
|
Z. Feng and C. C. Chavez, Mathematical Models for the Disease Dynamics of Tubeculosis, London: Gordon and Breach Science Publishers, 1998.
|
[21]
|
M. A Hajji and Q. Al-Mdallal, Numerical simulations of a delay model for immune system-tumor interaction, Sultan Qaboos Univ. Jour. Sci., 23 (2018), 19-31.
doi: 10.24200/squjs.vol23iss1pp19-31.
|
[22]
|
Z. Hammouch and T. Mekkaoui, Chaos synchronization of a fractional nonautonomous system, Nonautonomous Dynamical Systems, 1 (2014), 61-71.
doi: 10.2478/msds-2014-0001.
|
[23]
|
Z. Hammouch and T. Mekkaoui, Control of a new chaotic fractional-order system using Mittag–Leffler stability, Nonlinear Studies, 22 (2015), 565-577.
|
[24]
|
Z. Hammouch and T. Mekkaoui, Circuit design and simulation for the fractional-order chaotic behavior in a new dynamical system, Complex and Intelligent Systems, 4 (2018), 251-260.
doi: 10.1007/s40747-018-0070-3.
|
[25]
|
F. Jarad, T. Abdeljawad and Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative, Chaos, Solitons and Fractals, 117 (2018), 16-20.
doi: 10.1016/j.chaos.2018.10.006.
|
[26]
|
M. A. Khan, S. Ullah and M. F. Farooq, A new fractional model for tuberculosis with relapse via Atangana-Baleanu derivative, Chao. Solit. Frac., 116 (2018), 227-238.
doi: 10.1016/j.chaos.2018.09.039.
|
[27]
|
S. Kim, A. Aurelio and E. Jung, Mathematical model and intervention strategies for mitigating tuberculosis in the Philippines, J. Theo. bio., 443 (2018), 100-112.
doi: 10.1016/j.jtbi.2018.01.026.
|
[28]
|
J. Liu and T. Zhang, Global stability for a tuberculosis model, Math. Comp. Modelling, 54 (2011), 836-845.
doi: 10.1016/j.mcm.2011.03.033.
|
[29]
|
J. Losada and J. J. Nieto, Properties of a New Fractional Derivative without Singular Kernel, Progr. Fract. Differ. Appl, 2 (2015), 87-92.
|
[30]
|
J. E. E. Martnez, J. F. G. Aguilar, C. C. Ramn, A. A. Melndez and P. P. Longoria, Synchronized bioluminescence behavior of a set of fireflies involving fractional operators of Liouville-Caputo type, Int. J. Biomath., 11 (2018), 1-24.
doi: 10.1142/S1793524518500419.
|
[31]
|
J. E. E. Martnez, J. F. G. Aguilar, C. C. Ramn, A. A. Melndez and P. P. Longoria, A mathematical model of circadian rhythms synchronization using fractional differential equations system of coupled van der Pol oscillators, Int. J. Biomath., 11 (2018), 1850041, 25 pp.
doi: 10.1142/S1793524518500146.
|
[32]
|
H. Y. Martnez and J. F. G. Aguilar, A new modified definition of Caputo Fabrizio fractional-order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM), J. Comp. Appl. Math., 346 (2019), 247-260.
doi: 10.1016/j.cam.2018.07.023.
|
[33]
|
S. C Revelle, R. W. Lynn and F. Feldmann, Mathematical models for the economic allocation of tuberculosis control activities in developing nations, American Review of Respiratory Disease, 96 (1967), 893-909.
|
[34]
|
K. M. Saad and J. F. G. Aguilar, Analysis of reaction-diffusion system via a new fractional derivative with non-singular kernel, Phy. A: Stat. Mech. Appl., 509 (2018), 703-716.
doi: 10.1016/j.physa.2018.05.137.
|
[35]
|
S. G. Samko, A. A. Kilbas, I. O. Marichev and others, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, 1993.
|
[36]
|
J. Singh, J. D. Kumar, M. A. Qurashi and D. Baleanu, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic press, 1999.
|
[37]
|
J. Singh, D. Kumar, Z. Hammouch and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Applied Mathematics and Computation, 316 (2018), 504-515.
doi: 10.1016/j.amc.2017.08.048.
|
[38]
|
S. Ullah, M. A. Khan and M. Farooq, A fractional model for the dynamics of TB virus, Chao. Solit. Fract., 116 (2018), 63-71.
doi: 10.1016/j.chaos.2018.09.001.
|
[39]
|
S. Ullah, M. A. Khan and M. F. Farooq, Modeling and analysis of the fractional HBV model with Atangana-Baleanu derivative, The Eur. Phy. Jour. Plus, 133 (2018), 313.
doi: 10.1140/epjp/i2018-12120-1.
|
[40]
|
H. Waaler, A. Geser and S. Andersen, he use of mathematical models in the study of the epidemiology of tuberculosis, American J. of Public Health and the Nations Health, 52 (1962), 1002-1013.
|
[41]
|
S. R. Wallis, Mathematical models of tuberculosis reactivation and relapse, Front. microbiol., 7 (2016), 1-7.
doi: 10.3389/fmicb.2016.00669.
|
[42]
|
J. Zhang, Y. Liand and X. Zhang, Mathematical modeling of tuberculosis data of China, J. Theor. Bio., 365 (2015), 159-163.
doi: 10.1016/j.jtbi.2014.10.019.
|
[43]
|
National TB Control Program Pakistan (NTP), http://www.ntp.gov.pk/national_data.php.
|
[44]
|
Pakistan Bureau of Statistics. Pakistan's 6th census: Population of Major Cities 583 Census. 584, http://www.pbs.gov.pk/content/provisional-summary-results-6th-population-and-housing-census-2017-0, 2017.
|