American Institute of Mathematical Sciences

March  2020, 13(3): 975-993. doi: 10.3934/dcdss.2020057

A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative

 1 Department of Mathematics, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan 2 Department of Mathematics, City University of Science and Information Technology, Khyber Pakhtunkhwa, Pakistan 3 Departement de Mathematiques, FSTE Université Moulay Ismail, BP.509 Boutalamine 52000 Errachidia, Morocco 4 Department of Mathematics and Computer Science, Faculty of Arts and Sciences, Cankaya University Ankara, Turkey

* Corresponding author: hammouch.zakia@gmail.com

Received  September 2018 Revised  October 2018 Published  March 2019

In the present paper, we study the dynamics of tuberculosis model using fractional order derivative in Caputo-Fabrizio sense. The number of confirmed notified cases reported by national TB program Khyber Pakhtunkhwa, Pakistan, from the year 2002 to 2017 are used for our analysis and estimation of the model biological parameters. The threshold quantity $\mathcal{R}_0$ and equilibria of the model are determined. We prove the existence of the solution via fixed-point theory and further examine the uniqueness of the model variables. An iterative solution of the model is computed using fractional Adams-Bashforth technique. Finally, the numerical results are presented by using the estimated values of model parameters to justify the significance of the arbitrary fractional order derivative. The graphical results show that the fractional model of TB in Caputo-Fabrizio sense gives useful information about the complexity of the model and one can get reliable information about the model at any integer or non-integer case.

Citation: Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057
 [1] World Health Organization Media Centre. Available: , Available from: http://apps.who.int/iris/bitstream/10665/136607/1/ccsbrief_pak_en.pdf.Accessed2016. [2] T. Abdeljawad and D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, J. Report. Math. Phy., 80 (2017), 11-27.  doi: 10.1016/S0034-4877(17)30059-9. [3] T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Phy. A: Stat. Mech. Appl., 313 (2017), 1-12.  doi: 10.1186/s13662-017-1285-0. [4] T. Abdeljawad, Q. M. Al-Mdallal and M. A. Hajji, Arbitrary order fractional difference operators with discrete exponential kernels and applications, Dis. Dyn. Nat. Soci., 2017 (2017), Art. ID 4149320, 8 pp. doi: 10.1155/2017/4149320. [5] T. Abdeljawad and D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equ., 78 (2017), 1-9.  doi: 10.1186/s13662-017-1126-1. [6] T. Abdeljawad and Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwalls inequality, J. Comp. App. Math., 339 (2018), 218-230.  doi: 10.1016/j.cam.2017.10.021. [7] T. Abdeljawad and and F. Madjidi, Lyapunov type inequalities for fractional difference operators with discrete Mittag-Leffler kernels of order $2 show all references References:  [1] World Health Organization Media Centre. Available: , Available from: http://apps.who.int/iris/bitstream/10665/136607/1/ccsbrief_pak_en.pdf.Accessed2016. [2] T. Abdeljawad and D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, J. Report. Math. Phy., 80 (2017), 11-27. doi: 10.1016/S0034-4877(17)30059-9. [3] T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Phy. A: Stat. Mech. Appl., 313 (2017), 1-12. doi: 10.1186/s13662-017-1285-0. [4] T. Abdeljawad, Q. M. Al-Mdallal and M. A. Hajji, Arbitrary order fractional difference operators with discrete exponential kernels and applications, Dis. Dyn. Nat. Soci., 2017 (2017), Art. ID 4149320, 8 pp. doi: 10.1155/2017/4149320. [5] T. Abdeljawad and D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equ., 78 (2017), 1-9. doi: 10.1186/s13662-017-1126-1. [6] T. Abdeljawad and Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwalls inequality, J. Comp. App. Math., 339 (2018), 218-230. doi: 10.1016/j.cam.2017.10.021. [7] T. Abdeljawad and and F. Madjidi, Lyapunov type inequalities for fractional difference operators with discrete Mittag-Leffler kernels of order$2
The incidence data of TB from Khyber Pakhtunkhwa, Pakistan
The incidence data of TB from Khyber Pakhtunkhwa, Pakistan and the model fit for $\tau = 1$
Long term behavior of the CF model with realistic data when $\tau = 1$
Simulation of $S$ with $\tau$
Simulation of $L$ with $\tau$
Simulation of $I$ with $\tau$.
Simulation of $T$ with $\tau$.
Simulation of $R$ with $\tau$
Simulation of cumulative TB infected people with $\tau$
The graphical result of the total infected people for several values of the parameter $\gamma$ (treatment rate) and $\tau$ (fractional parameter)
The graphical result of the total infective with TB individuals for various values of the parameter $\eta$ (treatment failure rate) and $\tau$ (fractional parameter)
Fitting of the model parameters and its estimations for The TB infected cases of Khyber Pakhtunkhwa, Pakistan
 Parameter Definition value Ref. $\Lambda$ Birth rate 450,862.20088626 Estimated $\beta$ Disease contact rate 0.5433 Fitted $\alpha$ Progression from $T$ class to $R$ 0.3968 Fitted $\gamma$ Transmission from $I$ class to $T$ 0.2873 Fitted $\mu$ Natural mortality rate 1/67.7 [44] $\tau_1$ Disease related motility rate of infected individuals 0.2202 Fitted $\tau_2$ Disease related death rate in $T$ 0.0550 Fitted $\delta$ Leaving rate of the individuals from class $T$ 1.1996 Fitted $\eta$ Treatment failure rate 0.1500 Fitted $\epsilon$ Moving rate from $L$ class to $I$ 0.2007 Fitted
 Parameter Definition value Ref. $\Lambda$ Birth rate 450,862.20088626 Estimated $\beta$ Disease contact rate 0.5433 Fitted $\alpha$ Progression from $T$ class to $R$ 0.3968 Fitted $\gamma$ Transmission from $I$ class to $T$ 0.2873 Fitted $\mu$ Natural mortality rate 1/67.7 [44] $\tau_1$ Disease related motility rate of infected individuals 0.2202 Fitted $\tau_2$ Disease related death rate in $T$ 0.0550 Fitted $\delta$ Leaving rate of the individuals from class $T$ 1.1996 Fitted $\eta$ Treatment failure rate 0.1500 Fitted $\epsilon$ Moving rate from $L$ class to $I$ 0.2007 Fitted
 [1] Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317 [2] M. M. El-Dessoky, Muhammad Altaf Khan. Application of Caputo-Fabrizio derivative to a cancer model with unknown parameters. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3557-3575. doi: 10.3934/dcdss.2020429 [3] Muhammad Bilal Riaz, Syed Tauseef Saeed. Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3719-3746. doi: 10.3934/dcdss.2020430 [4] Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055 [5] Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021026 [6] Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022045 [7] Piotr Grabowski. On analytic semigroup generators involving Caputo fractional derivative. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022014 [8] Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692 [9] Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007 [10] Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 395-426. doi: 10.3934/naco.2021013 [11] Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248 [12] Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control and Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033 [13] Kolade M. Owolabi, Abdon Atangana, Jose Francisco Gómez-Aguilar. Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2455-2469. doi: 10.3934/dcdss.2021060 [14] Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023 [15] Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030 [16] Platon Surkov. Dynamical estimation of a noisy input in a system with a Caputo fractional derivative. The case of continuous measurements of a part of phase coordinates. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022020 [17] Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations and Control Theory, 2022, 11 (1) : 239-258. doi: 10.3934/eect.2021001 [18] Amina-Aicha Khennaoui, A. Othman Almatroud, Adel Ouannas, M. Mossa Al-sawalha, Giuseppe Grassi, Viet-Thanh Pham. The effect of caputo fractional difference operator on a novel game theory model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4549-4565. doi: 10.3934/dcdsb.2020302 [19] Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775 [20] Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 723-739. doi: 10.3934/dcdss.2020040

2020 Impact Factor: 2.425