• Previous Article
    MHD natural convection boundary-layer flow over a semi-infinite heated plate with arbitrary inclination
  • DCDS-S Home
  • This Issue
  • Next Article
    A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative
March  2020, 13(3): 995-1006. doi: 10.3934/dcdss.2020058

Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel

1. 

Faculty of Science, Department of Mathematics-Computer Sciences, Necmettin Erbakan University, Konya, 42090, Turkey

2. 

Faculty of Sciences and Arts, Department of Mathematics, Balıkesir University, Balıkesir, 10145, Turkey

* Corresponding author: mehmetyavuz@erbakan.edu.tr

Received  August 2018 Revised  September 2018 Published  March 2019

In this manuscript, we have proposed a comparison based on newly defined fractional derivative operators which are called as Caputo-Fabrizio (CF) and Atangana-Baleanu (AB). In 2015, Caputo and Fabrizio established a new fractional operator by using exponential kernel. After one year, Atangana and Baleanu recommended a different-type fractional operator that uses the generalized Mittag-Leffler function (MLF). Many real-life problems can be modelled and can be solved by numerical-analytical solution methods which are derived with these operators. In this paper, we suggest an approximate solution method for PDEs of fractional order by using the mentioned operators. We consider the Laplace homotopy transformation method (LHTM) which is the combination of standard homotopy technique (SHT) and Laplace transformation method (LTM). In this study, we aim to demonstrate the effectiveness of the aforementioned method by comparing the solutions we have achieved with the exact solutions. Furthermore, by constructing the error analysis, we test the practicability and usefulness of the method.

Citation: Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 995-1006. doi: 10.3934/dcdss.2020058
References:
[1]

T. Abdeljawad and D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107, arXiv: 1607.00262. doi: 10.22436/jnsa.010.03.20.  Google Scholar

[2]

B. S. T. Alkahtani and A. Atangana, Controlling the wave movement on the surface of shallow water with the Caputo–Fabrizio derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 539-546.  doi: 10.1016/j.chaos.2016.03.012.  Google Scholar

[3]

B. S. T. Alkahtani and A. Atangana, Analysis of non-homogeneous heat model with new trend of derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 566-571.  doi: 10.1016/j.chaos.2016.03.027.  Google Scholar

[4]

B. S. T. Alkahtani, Chua's circuit model with Atangana–Baleanu derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 547-551.   Google Scholar

[5]

O. J. J. Alkahtani, Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model, Chaos, Solitons & Fractals, 89 (2016), 552-559.  doi: 10.1016/j.chaos.2016.03.026.  Google Scholar

[6]

R. T. Alqahtani, Atangana-Baleanu derivative with fractional order applied to the model of groundwater within an unconfined aquifer, Journal of Nonlinear Sciences and Applications, 9 (2016), 3647-3654.  doi: 10.22436/jnsa.009.06.17.  Google Scholar

[7]

F. A. M. N. Al-Salti and E. Karimov, Initial and boundary value problems for fractional differential equations involving Atangana-Baleanu derivative, preprint, arXiv: 1706.00740. Google Scholar

[8]

N. A. Asif, Z. Hammouch, M. B. Riaz and H. Bulut, Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, The European Physical Journal Plus, 133 (2018), 272. doi: 10.1140/epjp/i2018-12098-6.  Google Scholar

[9]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 22 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[10]

A. Atangana and I. Koca, On the new fractional derivative and application to nonlinear Baggs and Freedman model, Journal of Nonlinear Sciences and Applications, 9 (2016), 2467-2480.  doi: 10.22436/jnsa.009.05.46.  Google Scholar

[11]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Chaos, Solitons & Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.  Google Scholar

[12]

A. Atangana and B. S. T. Alkahtani, New model of groundwater flowing within a confine aquifer: Application of Caputo-Fabrizio derivative, Arabian Journal of Geosciences, 9 (2016), 3647-3654.  doi: 10.22436/jnsa.009.06.17.  Google Scholar

[13]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 1-13.   Google Scholar

[14]

M. Caputo, Linear models of dissipation whose Q is almost frequency independent I, Geophysical Journal International, 13 (1967), 529-539.  doi: 10.1111/j.1365-246X.1967.tb02303.x.  Google Scholar

[15]

J. F. Gómez-AguilarR. F. Escobar-JiménezM. G. López-López and V. M. Alvarado-Martínez, Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media, Journal of Electromagnetic Waves and Applications, 30 (2016), 1937-1952.  doi: 10.1080/09205071.2016.1225521.  Google Scholar

[16]

J. F. Gómez-Aguilar, V. F. Morales-Delgado, M. A. Taneco-Hernández, D. Baleanu, R. F. Escobar-Jiménez and M. M. Al Qurashi, Analytical solutions of the electrical RLC circuit via Liouville aputo operators with local and non-local kernels, Entropy, 18 (2016), 402. doi: 10.3390/e18080402.  Google Scholar

[17]

J. Hristov, Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey's kernel to the Caputo-Fabrizio time-fractional derivative, Thermal Science, 20 (2016), 757-762.  doi: 10.2298/TSCI160112019H.  Google Scholar

[18]

J. Hristov, Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey's kernel and analytical solutions, Thermal Science, 21 (2017), 827-839.  doi: 10.2298/TSCI160229115H.  Google Scholar

[19]

I. Koca and A. Atangana, Solutions of Cattaneo-Hristov model of elastic heat diffusion with Caputo-Fabrizio and Atangana-Baleanu fractional derivatives, Thermal Science, 21 (2017), 2299-2305.  doi: 10.2298/TSCI160209103K.  Google Scholar

[20]

V. F. Morales-Delgado, J. F. Gómez-Aguilar, H. Yépez-Martínez, D. Baleanu, R. F. Escobar-Jimenez and V. H. Olivares-Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Advances in Difference Equations, 2016 (2016), Paper No. 164, 17 pp. doi: 10.1186/s13662-016-0891-6.  Google Scholar

[21]

Z. Odibat and S. Momani, The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics, Computers & Mathematics with Applications, 58 (2009), 2199-2208.  doi: 10.1016/j.camwa.2009.03.009.  Google Scholar

[22]

N. A. SheikhF. AliM. SaqibI. KhanS. A. A. JanA. S. Alshomrani and M. S. Alghamdi, Comparison and analysis of the Atangana–Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, Results in Physics, 7 (2017), 789-800.  doi: 10.1016/j.rinp.2017.01.025.  Google Scholar

[23]

N. A. Sheikh, F. Ali, M. Saqib, I. Khan and S. A. A. Jan, A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid, The European Physical Journal Plus, 132 (2017), 54. doi: 10.1140/epjp/i2017-11326-y.  Google Scholar

[24]

J. SinghD. KumarZ. Hammouch and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Applied Mathematics and Computation, 316 (2018), 504-515.  doi: 10.1016/j.amc.2017.08.048.  Google Scholar

[25]

M. Yavuz and N. Ozdemir, European vanilla option pricing model of fractional order without singular kernel, Fractal and Fractional, 2 (2018), 3. doi: 10.3390/fractalfract2010003.  Google Scholar

[26]

M. Yavuz, N. Ozdemir and H. M. Baskonus, Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel, The European Physical Journal Plus, 133 (2018), 215. doi: 10.1140/epjp/i2018-12051-9.  Google Scholar

show all references

References:
[1]

T. Abdeljawad and D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107, arXiv: 1607.00262. doi: 10.22436/jnsa.010.03.20.  Google Scholar

[2]

B. S. T. Alkahtani and A. Atangana, Controlling the wave movement on the surface of shallow water with the Caputo–Fabrizio derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 539-546.  doi: 10.1016/j.chaos.2016.03.012.  Google Scholar

[3]

B. S. T. Alkahtani and A. Atangana, Analysis of non-homogeneous heat model with new trend of derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 566-571.  doi: 10.1016/j.chaos.2016.03.027.  Google Scholar

[4]

B. S. T. Alkahtani, Chua's circuit model with Atangana–Baleanu derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 547-551.   Google Scholar

[5]

O. J. J. Alkahtani, Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model, Chaos, Solitons & Fractals, 89 (2016), 552-559.  doi: 10.1016/j.chaos.2016.03.026.  Google Scholar

[6]

R. T. Alqahtani, Atangana-Baleanu derivative with fractional order applied to the model of groundwater within an unconfined aquifer, Journal of Nonlinear Sciences and Applications, 9 (2016), 3647-3654.  doi: 10.22436/jnsa.009.06.17.  Google Scholar

[7]

F. A. M. N. Al-Salti and E. Karimov, Initial and boundary value problems for fractional differential equations involving Atangana-Baleanu derivative, preprint, arXiv: 1706.00740. Google Scholar

[8]

N. A. Asif, Z. Hammouch, M. B. Riaz and H. Bulut, Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, The European Physical Journal Plus, 133 (2018), 272. doi: 10.1140/epjp/i2018-12098-6.  Google Scholar

[9]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 22 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[10]

A. Atangana and I. Koca, On the new fractional derivative and application to nonlinear Baggs and Freedman model, Journal of Nonlinear Sciences and Applications, 9 (2016), 2467-2480.  doi: 10.22436/jnsa.009.05.46.  Google Scholar

[11]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Chaos, Solitons & Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.  Google Scholar

[12]

A. Atangana and B. S. T. Alkahtani, New model of groundwater flowing within a confine aquifer: Application of Caputo-Fabrizio derivative, Arabian Journal of Geosciences, 9 (2016), 3647-3654.  doi: 10.22436/jnsa.009.06.17.  Google Scholar

[13]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 1-13.   Google Scholar

[14]

M. Caputo, Linear models of dissipation whose Q is almost frequency independent I, Geophysical Journal International, 13 (1967), 529-539.  doi: 10.1111/j.1365-246X.1967.tb02303.x.  Google Scholar

[15]

J. F. Gómez-AguilarR. F. Escobar-JiménezM. G. López-López and V. M. Alvarado-Martínez, Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media, Journal of Electromagnetic Waves and Applications, 30 (2016), 1937-1952.  doi: 10.1080/09205071.2016.1225521.  Google Scholar

[16]

J. F. Gómez-Aguilar, V. F. Morales-Delgado, M. A. Taneco-Hernández, D. Baleanu, R. F. Escobar-Jiménez and M. M. Al Qurashi, Analytical solutions of the electrical RLC circuit via Liouville aputo operators with local and non-local kernels, Entropy, 18 (2016), 402. doi: 10.3390/e18080402.  Google Scholar

[17]

J. Hristov, Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey's kernel to the Caputo-Fabrizio time-fractional derivative, Thermal Science, 20 (2016), 757-762.  doi: 10.2298/TSCI160112019H.  Google Scholar

[18]

J. Hristov, Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey's kernel and analytical solutions, Thermal Science, 21 (2017), 827-839.  doi: 10.2298/TSCI160229115H.  Google Scholar

[19]

I. Koca and A. Atangana, Solutions of Cattaneo-Hristov model of elastic heat diffusion with Caputo-Fabrizio and Atangana-Baleanu fractional derivatives, Thermal Science, 21 (2017), 2299-2305.  doi: 10.2298/TSCI160209103K.  Google Scholar

[20]

V. F. Morales-Delgado, J. F. Gómez-Aguilar, H. Yépez-Martínez, D. Baleanu, R. F. Escobar-Jimenez and V. H. Olivares-Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Advances in Difference Equations, 2016 (2016), Paper No. 164, 17 pp. doi: 10.1186/s13662-016-0891-6.  Google Scholar

[21]

Z. Odibat and S. Momani, The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics, Computers & Mathematics with Applications, 58 (2009), 2199-2208.  doi: 10.1016/j.camwa.2009.03.009.  Google Scholar

[22]

N. A. SheikhF. AliM. SaqibI. KhanS. A. A. JanA. S. Alshomrani and M. S. Alghamdi, Comparison and analysis of the Atangana–Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, Results in Physics, 7 (2017), 789-800.  doi: 10.1016/j.rinp.2017.01.025.  Google Scholar

[23]

N. A. Sheikh, F. Ali, M. Saqib, I. Khan and S. A. A. Jan, A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid, The European Physical Journal Plus, 132 (2017), 54. doi: 10.1140/epjp/i2017-11326-y.  Google Scholar

[24]

J. SinghD. KumarZ. Hammouch and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Applied Mathematics and Computation, 316 (2018), 504-515.  doi: 10.1016/j.amc.2017.08.048.  Google Scholar

[25]

M. Yavuz and N. Ozdemir, European vanilla option pricing model of fractional order without singular kernel, Fractal and Fractional, 2 (2018), 3. doi: 10.3390/fractalfract2010003.  Google Scholar

[26]

M. Yavuz, N. Ozdemir and H. M. Baskonus, Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel, The European Physical Journal Plus, 133 (2018), 215. doi: 10.1140/epjp/i2018-12051-9.  Google Scholar

Figure 1.  The solution function of (29) in the CFO sense for $ x = 0.5 $ (left) and $ x = 1 $ (right)
Figure 2.  The solution function of (29) in the ABO sense for $ x = 0.5 $ (left) and $ x = 1 $ (right)
Figure 3.  The solution of Eq. (37) in the CFO sense for various values of $ \alpha . $
Figure 4.  The solution function of (45) in the ABO sense for various values of $ \alpha = 0.7 $ (left) and $ \alpha = 0.9 $ (right)
Figure 5.  Inaccuracy rates (%) of the mentioned method
[1]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014

[2]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[3]

Joel Coacalle, Andrew Raich. Compactness of the complex Green operator on non-pseudoconvex CR manifolds. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021061

[4]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[5]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[6]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033

[7]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[8]

Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021037

[9]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023

[10]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[11]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026

[12]

Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021009

[13]

Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021104

[14]

Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021062

[15]

Maha Daoud, El Haj Laamri. Fractional Laplacians : A short survey. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021027

[16]

George A. Anastassiou. Iyengar-Hilfer fractional inequalities. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021004

[17]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[18]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[19]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[20]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (1515)
  • HTML views (688)
  • Cited by (14)

Other articles
by authors

[Back to Top]