• Previous Article
    MHD natural convection boundary-layer flow over a semi-infinite heated plate with arbitrary inclination
  • DCDS-S Home
  • This Issue
  • Next Article
    A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative
March  2020, 13(3): 995-1006. doi: 10.3934/dcdss.2020058

Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel

1. 

Faculty of Science, Department of Mathematics-Computer Sciences, Necmettin Erbakan University, Konya, 42090, Turkey

2. 

Faculty of Sciences and Arts, Department of Mathematics, Balıkesir University, Balıkesir, 10145, Turkey

* Corresponding author: mehmetyavuz@erbakan.edu.tr

Received  August 2018 Revised  September 2018 Published  March 2019

In this manuscript, we have proposed a comparison based on newly defined fractional derivative operators which are called as Caputo-Fabrizio (CF) and Atangana-Baleanu (AB). In 2015, Caputo and Fabrizio established a new fractional operator by using exponential kernel. After one year, Atangana and Baleanu recommended a different-type fractional operator that uses the generalized Mittag-Leffler function (MLF). Many real-life problems can be modelled and can be solved by numerical-analytical solution methods which are derived with these operators. In this paper, we suggest an approximate solution method for PDEs of fractional order by using the mentioned operators. We consider the Laplace homotopy transformation method (LHTM) which is the combination of standard homotopy technique (SHT) and Laplace transformation method (LTM). In this study, we aim to demonstrate the effectiveness of the aforementioned method by comparing the solutions we have achieved with the exact solutions. Furthermore, by constructing the error analysis, we test the practicability and usefulness of the method.

Citation: Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 995-1006. doi: 10.3934/dcdss.2020058
References:
[1]

T. Abdeljawad and D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107, arXiv: 1607.00262. doi: 10.22436/jnsa.010.03.20.  Google Scholar

[2]

B. S. T. Alkahtani and A. Atangana, Controlling the wave movement on the surface of shallow water with the Caputo–Fabrizio derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 539-546.  doi: 10.1016/j.chaos.2016.03.012.  Google Scholar

[3]

B. S. T. Alkahtani and A. Atangana, Analysis of non-homogeneous heat model with new trend of derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 566-571.  doi: 10.1016/j.chaos.2016.03.027.  Google Scholar

[4]

B. S. T. Alkahtani, Chua's circuit model with Atangana–Baleanu derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 547-551.   Google Scholar

[5]

O. J. J. Alkahtani, Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model, Chaos, Solitons & Fractals, 89 (2016), 552-559.  doi: 10.1016/j.chaos.2016.03.026.  Google Scholar

[6]

R. T. Alqahtani, Atangana-Baleanu derivative with fractional order applied to the model of groundwater within an unconfined aquifer, Journal of Nonlinear Sciences and Applications, 9 (2016), 3647-3654.  doi: 10.22436/jnsa.009.06.17.  Google Scholar

[7]

F. A. M. N. Al-Salti and E. Karimov, Initial and boundary value problems for fractional differential equations involving Atangana-Baleanu derivative, preprint, arXiv: 1706.00740. Google Scholar

[8]

N. A. Asif, Z. Hammouch, M. B. Riaz and H. Bulut, Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, The European Physical Journal Plus, 133 (2018), 272. doi: 10.1140/epjp/i2018-12098-6.  Google Scholar

[9]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 22 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[10]

A. Atangana and I. Koca, On the new fractional derivative and application to nonlinear Baggs and Freedman model, Journal of Nonlinear Sciences and Applications, 9 (2016), 2467-2480.  doi: 10.22436/jnsa.009.05.46.  Google Scholar

[11]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Chaos, Solitons & Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.  Google Scholar

[12]

A. Atangana and B. S. T. Alkahtani, New model of groundwater flowing within a confine aquifer: Application of Caputo-Fabrizio derivative, Arabian Journal of Geosciences, 9 (2016), 3647-3654.  doi: 10.22436/jnsa.009.06.17.  Google Scholar

[13]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 1-13.   Google Scholar

[14]

M. Caputo, Linear models of dissipation whose Q is almost frequency independent I, Geophysical Journal International, 13 (1967), 529-539.  doi: 10.1111/j.1365-246X.1967.tb02303.x.  Google Scholar

[15]

J. F. Gómez-AguilarR. F. Escobar-JiménezM. G. López-López and V. M. Alvarado-Martínez, Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media, Journal of Electromagnetic Waves and Applications, 30 (2016), 1937-1952.  doi: 10.1080/09205071.2016.1225521.  Google Scholar

[16]

J. F. Gómez-Aguilar, V. F. Morales-Delgado, M. A. Taneco-Hernández, D. Baleanu, R. F. Escobar-Jiménez and M. M. Al Qurashi, Analytical solutions of the electrical RLC circuit via Liouville aputo operators with local and non-local kernels, Entropy, 18 (2016), 402. doi: 10.3390/e18080402.  Google Scholar

[17]

J. Hristov, Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey's kernel to the Caputo-Fabrizio time-fractional derivative, Thermal Science, 20 (2016), 757-762.  doi: 10.2298/TSCI160112019H.  Google Scholar

[18]

J. Hristov, Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey's kernel and analytical solutions, Thermal Science, 21 (2017), 827-839.  doi: 10.2298/TSCI160229115H.  Google Scholar

[19]

I. Koca and A. Atangana, Solutions of Cattaneo-Hristov model of elastic heat diffusion with Caputo-Fabrizio and Atangana-Baleanu fractional derivatives, Thermal Science, 21 (2017), 2299-2305.  doi: 10.2298/TSCI160209103K.  Google Scholar

[20]

V. F. Morales-Delgado, J. F. Gómez-Aguilar, H. Yépez-Martínez, D. Baleanu, R. F. Escobar-Jimenez and V. H. Olivares-Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Advances in Difference Equations, 2016 (2016), Paper No. 164, 17 pp. doi: 10.1186/s13662-016-0891-6.  Google Scholar

[21]

Z. Odibat and S. Momani, The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics, Computers & Mathematics with Applications, 58 (2009), 2199-2208.  doi: 10.1016/j.camwa.2009.03.009.  Google Scholar

[22]

N. A. SheikhF. AliM. SaqibI. KhanS. A. A. JanA. S. Alshomrani and M. S. Alghamdi, Comparison and analysis of the Atangana–Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, Results in Physics, 7 (2017), 789-800.  doi: 10.1016/j.rinp.2017.01.025.  Google Scholar

[23]

N. A. Sheikh, F. Ali, M. Saqib, I. Khan and S. A. A. Jan, A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid, The European Physical Journal Plus, 132 (2017), 54. doi: 10.1140/epjp/i2017-11326-y.  Google Scholar

[24]

J. SinghD. KumarZ. Hammouch and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Applied Mathematics and Computation, 316 (2018), 504-515.  doi: 10.1016/j.amc.2017.08.048.  Google Scholar

[25]

M. Yavuz and N. Ozdemir, European vanilla option pricing model of fractional order without singular kernel, Fractal and Fractional, 2 (2018), 3. doi: 10.3390/fractalfract2010003.  Google Scholar

[26]

M. Yavuz, N. Ozdemir and H. M. Baskonus, Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel, The European Physical Journal Plus, 133 (2018), 215. doi: 10.1140/epjp/i2018-12051-9.  Google Scholar

show all references

References:
[1]

T. Abdeljawad and D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107, arXiv: 1607.00262. doi: 10.22436/jnsa.010.03.20.  Google Scholar

[2]

B. S. T. Alkahtani and A. Atangana, Controlling the wave movement on the surface of shallow water with the Caputo–Fabrizio derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 539-546.  doi: 10.1016/j.chaos.2016.03.012.  Google Scholar

[3]

B. S. T. Alkahtani and A. Atangana, Analysis of non-homogeneous heat model with new trend of derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 566-571.  doi: 10.1016/j.chaos.2016.03.027.  Google Scholar

[4]

B. S. T. Alkahtani, Chua's circuit model with Atangana–Baleanu derivative with fractional order, Chaos, Solitons & Fractals, 89 (2016), 547-551.   Google Scholar

[5]

O. J. J. Alkahtani, Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model, Chaos, Solitons & Fractals, 89 (2016), 552-559.  doi: 10.1016/j.chaos.2016.03.026.  Google Scholar

[6]

R. T. Alqahtani, Atangana-Baleanu derivative with fractional order applied to the model of groundwater within an unconfined aquifer, Journal of Nonlinear Sciences and Applications, 9 (2016), 3647-3654.  doi: 10.22436/jnsa.009.06.17.  Google Scholar

[7]

F. A. M. N. Al-Salti and E. Karimov, Initial and boundary value problems for fractional differential equations involving Atangana-Baleanu derivative, preprint, arXiv: 1706.00740. Google Scholar

[8]

N. A. Asif, Z. Hammouch, M. B. Riaz and H. Bulut, Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, The European Physical Journal Plus, 133 (2018), 272. doi: 10.1140/epjp/i2018-12098-6.  Google Scholar

[9]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 22 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[10]

A. Atangana and I. Koca, On the new fractional derivative and application to nonlinear Baggs and Freedman model, Journal of Nonlinear Sciences and Applications, 9 (2016), 2467-2480.  doi: 10.22436/jnsa.009.05.46.  Google Scholar

[11]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order, Chaos, Solitons & Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.  Google Scholar

[12]

A. Atangana and B. S. T. Alkahtani, New model of groundwater flowing within a confine aquifer: Application of Caputo-Fabrizio derivative, Arabian Journal of Geosciences, 9 (2016), 3647-3654.  doi: 10.22436/jnsa.009.06.17.  Google Scholar

[13]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 1-13.   Google Scholar

[14]

M. Caputo, Linear models of dissipation whose Q is almost frequency independent I, Geophysical Journal International, 13 (1967), 529-539.  doi: 10.1111/j.1365-246X.1967.tb02303.x.  Google Scholar

[15]

J. F. Gómez-AguilarR. F. Escobar-JiménezM. G. López-López and V. M. Alvarado-Martínez, Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media, Journal of Electromagnetic Waves and Applications, 30 (2016), 1937-1952.  doi: 10.1080/09205071.2016.1225521.  Google Scholar

[16]

J. F. Gómez-Aguilar, V. F. Morales-Delgado, M. A. Taneco-Hernández, D. Baleanu, R. F. Escobar-Jiménez and M. M. Al Qurashi, Analytical solutions of the electrical RLC circuit via Liouville aputo operators with local and non-local kernels, Entropy, 18 (2016), 402. doi: 10.3390/e18080402.  Google Scholar

[17]

J. Hristov, Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey's kernel to the Caputo-Fabrizio time-fractional derivative, Thermal Science, 20 (2016), 757-762.  doi: 10.2298/TSCI160112019H.  Google Scholar

[18]

J. Hristov, Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey's kernel and analytical solutions, Thermal Science, 21 (2017), 827-839.  doi: 10.2298/TSCI160229115H.  Google Scholar

[19]

I. Koca and A. Atangana, Solutions of Cattaneo-Hristov model of elastic heat diffusion with Caputo-Fabrizio and Atangana-Baleanu fractional derivatives, Thermal Science, 21 (2017), 2299-2305.  doi: 10.2298/TSCI160209103K.  Google Scholar

[20]

V. F. Morales-Delgado, J. F. Gómez-Aguilar, H. Yépez-Martínez, D. Baleanu, R. F. Escobar-Jimenez and V. H. Olivares-Peregrino, Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Advances in Difference Equations, 2016 (2016), Paper No. 164, 17 pp. doi: 10.1186/s13662-016-0891-6.  Google Scholar

[21]

Z. Odibat and S. Momani, The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics, Computers & Mathematics with Applications, 58 (2009), 2199-2208.  doi: 10.1016/j.camwa.2009.03.009.  Google Scholar

[22]

N. A. SheikhF. AliM. SaqibI. KhanS. A. A. JanA. S. Alshomrani and M. S. Alghamdi, Comparison and analysis of the Atangana–Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, Results in Physics, 7 (2017), 789-800.  doi: 10.1016/j.rinp.2017.01.025.  Google Scholar

[23]

N. A. Sheikh, F. Ali, M. Saqib, I. Khan and S. A. A. Jan, A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid, The European Physical Journal Plus, 132 (2017), 54. doi: 10.1140/epjp/i2017-11326-y.  Google Scholar

[24]

J. SinghD. KumarZ. Hammouch and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Applied Mathematics and Computation, 316 (2018), 504-515.  doi: 10.1016/j.amc.2017.08.048.  Google Scholar

[25]

M. Yavuz and N. Ozdemir, European vanilla option pricing model of fractional order without singular kernel, Fractal and Fractional, 2 (2018), 3. doi: 10.3390/fractalfract2010003.  Google Scholar

[26]

M. Yavuz, N. Ozdemir and H. M. Baskonus, Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel, The European Physical Journal Plus, 133 (2018), 215. doi: 10.1140/epjp/i2018-12051-9.  Google Scholar

Figure 1.  The solution function of (29) in the CFO sense for $ x = 0.5 $ (left) and $ x = 1 $ (right)
Figure 2.  The solution function of (29) in the ABO sense for $ x = 0.5 $ (left) and $ x = 1 $ (right)
Figure 3.  The solution of Eq. (37) in the CFO sense for various values of $ \alpha . $
Figure 4.  The solution function of (45) in the ABO sense for various values of $ \alpha = 0.7 $ (left) and $ \alpha = 0.9 $ (right)
Figure 5.  Inaccuracy rates (%) of the mentioned method
[1]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[2]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[3]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[4]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[5]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[8]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[9]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[10]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[11]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[12]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[13]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[14]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[15]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[16]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[17]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[18]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[19]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[20]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (1283)
  • HTML views (685)
  • Cited by (11)

Other articles
by authors

[Back to Top]