The forward $ \omega $-limit set $ \omega_{\mathcal{B}} $ of a nonautonomous dynamical system $ \varphi $ with a positively invariant absorbing family $ \mathcal{B} $ $ = $ $ \{ B(t), t \in \mathbb{R}\} $ of closed and bounded subsets of a Banach space $ X $ which is asymptotically compact is shown to be asymptotically positive invariant in general and asymptotic negative invariant if $ \varphi $ is also strongly asymptotically compact and eventually continuous in its initial value uniformly on bounded time sets independently of the initial time. In addition, a necessary and sufficient condition for a $ \varphi $-invariant family $ \mathcal{A} $ $ = $ $ \left\{A(t), t \in \mathbb{R}\right\} $ in $ \mathcal{B} $ of nonempty compact subsets of $ X $ to be a forward attractor is generalised to this context.
Citation: |
[1] |
M. Bortolan, A. N. Carvalho and J. A. Langa, Structure of attractors for skew product semiflows, J. Differential Equations, 257 (2014), 490-522.
doi: 10.1016/j.jde.2014.04.008.![]() ![]() ![]() |
[2] |
T. Caraballo, J. A. Langa, V. Melnik and J. Valero, Pullback attractors of nonautonomous and stochastic multivalued dynamical systems, Set-Valued Anal, 11 (2003), 153-201.
doi: 10.1023/A:1022902802385.![]() ![]() ![]() |
[3] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors of infinite dimensional nonautonomous dynamical systems, Springer, New York, 2013.
![]() |
[4] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Non-autonomous dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 703-747.
doi: 10.3934/dcdsb.2015.20.703.![]() ![]() ![]() |
[5] |
H. Cui and P. E. Kloeden, Forward random attractors of non-autonomous random dynamical systems, J. Differential Equations, 265 (2018), 6166-6186.
![]() |
[6] |
H. Cui and P. E. Kloeden, Tail convergences of pullback attractors for asymptotically converging multi-valued dynamical systems, (in press).
![]() |
[7] |
H. Cui and J. A. Langa, Uniform attractors for non-autonommous random dynamical systems, J. Differential Equations, 263 (2017), 1225-1268.
doi: 10.1016/j.jde.2017.03.018.![]() ![]() ![]() |
[8] |
P. E. Kloeden, Asymptotic invariance and limit sets of general control systems, J. Differential Equations, 19 (1975), 91-105.
doi: 10.1016/0022-0396(75)90021-2.![]() ![]() ![]() |
[9] |
P. E. Kloeden, Asymptotic invariance and the discretisation of nonautonomous forward attracting sets, J. Comput. Dynamics, 3 (2016), 179-189.
doi: 10.3934/jcd.2016009.![]() ![]() ![]() |
[10] |
P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proc. Amer. Mat. Soc., 144 (2016), 259-268.
doi: 10.1090/proc/12735.![]() ![]() ![]() |
[11] |
P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Amer. Math. Soc., Providence, 2011.
doi: 10.1090/surv/176.![]() ![]() ![]() |
[12] |
P. E. Kloeden and M. Yang, Forward attraction in nonautonomous difference equations, J. Difference Eqns. Applns., 22 (2016), 513-525.
doi: 10.1080/10236198.2015.1107550.![]() ![]() ![]() |
[13] |
V. Lakshmikantham and S. Leela, Asymptotic self-invariant sets and conditional stability, in Proc. Inter. Symp. Diff. Equations and Dynamical Systems, Puerto Rico 1965, Academic Press, New York, 1967, 363-373.
![]() ![]() |
[14] |
J. P. Lasalle, The Stability of Dynamical Systems, SIAM-CBMS, Philadelphia, 1976.
![]() ![]() |
[15] |
M. I. Vishik, Asymptotic Behaviour of Solutions of Evolutionary Equations., Cambridge University Press, Cambridge, 1992.
![]() ![]() |