April  2020, 13(4): 1103-1114. doi: 10.3934/dcdss.2020065

Forward omega limit sets of nonautonomous dynamical systems

School of Mathematics and Statistics, and, Hubei Key Laboratory of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan 430074, China

Dedicated to Professor Jürgen Scheurle on his 65th birthday

Received  September 2017 Revised  May 2018 Published  April 2019

Fund Project: HC was partially funded by China Postdoctoral Science Foundation 2017M612430. PEK and MY were partially supported by the Chinese NSF grant 11571125.

The forward $ \omega $-limit set $ \omega_{\mathcal{B}} $ of a nonautonomous dynamical system $ \varphi $ with a positively invariant absorbing family $ \mathcal{B} $ $ = $ $ \{ B(t), t \in \mathbb{R}\} $ of closed and bounded subsets of a Banach space $ X $ which is asymptotically compact is shown to be asymptotically positive invariant in general and asymptotic negative invariant if $ \varphi $ is also strongly asymptotically compact and eventually continuous in its initial value uniformly on bounded time sets independently of the initial time. In addition, a necessary and sufficient condition for a $ \varphi $-invariant family $ \mathcal{A} $ $ = $ $ \left\{A(t), t \in \mathbb{R}\right\} $ in $ \mathcal{B} $ of nonempty compact subsets of $ X $ to be a forward attractor is generalised to this context.

Citation: Hongyong Cui, Peter E. Kloeden, Meihua Yang. Forward omega limit sets of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1103-1114. doi: 10.3934/dcdss.2020065
References:
[1]

M. BortolanA. N. Carvalho and J. A. Langa, Structure of attractors for skew product semiflows, J. Differential Equations, 257 (2014), 490-522.  doi: 10.1016/j.jde.2014.04.008.  Google Scholar

[2]

T. CaraballoJ. A. LangaV. Melnik and J. Valero, Pullback attractors of nonautonomous and stochastic multivalued dynamical systems, Set-Valued Anal, 11 (2003), 153-201.  doi: 10.1023/A:1022902802385.  Google Scholar

[3]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors of infinite dimensional nonautonomous dynamical systems, Springer, New York, 2013. Google Scholar

[4]

A. N. CarvalhoJ. A. Langa and J. C. Robinson, Non-autonomous dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 703-747.  doi: 10.3934/dcdsb.2015.20.703.  Google Scholar

[5]

H. Cui and P. E. Kloeden, Forward random attractors of non-autonomous random dynamical systems, J. Differential Equations, 265 (2018), 6166-6186.   Google Scholar

[6]

H. Cui and P. E. Kloeden, Tail convergences of pullback attractors for asymptotically converging multi-valued dynamical systems, (in press). Google Scholar

[7]

H. Cui and J. A. Langa, Uniform attractors for non-autonommous random dynamical systems, J. Differential Equations, 263 (2017), 1225-1268.  doi: 10.1016/j.jde.2017.03.018.  Google Scholar

[8]

P. E. Kloeden, Asymptotic invariance and limit sets of general control systems, J. Differential Equations, 19 (1975), 91-105.  doi: 10.1016/0022-0396(75)90021-2.  Google Scholar

[9]

P. E. Kloeden, Asymptotic invariance and the discretisation of nonautonomous forward attracting sets, J. Comput. Dynamics, 3 (2016), 179-189.  doi: 10.3934/jcd.2016009.  Google Scholar

[10]

P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proc. Amer. Mat. Soc., 144 (2016), 259-268.  doi: 10.1090/proc/12735.  Google Scholar

[11]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Amer. Math. Soc., Providence, 2011. doi: 10.1090/surv/176.  Google Scholar

[12]

P. E. Kloeden and M. Yang, Forward attraction in nonautonomous difference equations, J. Difference Eqns. Applns., 22 (2016), 513-525.  doi: 10.1080/10236198.2015.1107550.  Google Scholar

[13]

V. Lakshmikantham and S. Leela, Asymptotic self-invariant sets and conditional stability, in Proc. Inter. Symp. Diff. Equations and Dynamical Systems, Puerto Rico 1965, Academic Press, New York, 1967, 363-373.  Google Scholar

[14]

J. P. Lasalle, The Stability of Dynamical Systems, SIAM-CBMS, Philadelphia, 1976.  Google Scholar

[15] M. I. Vishik, Asymptotic Behaviour of Solutions of Evolutionary Equations., Cambridge University Press, Cambridge, 1992.   Google Scholar

show all references

References:
[1]

M. BortolanA. N. Carvalho and J. A. Langa, Structure of attractors for skew product semiflows, J. Differential Equations, 257 (2014), 490-522.  doi: 10.1016/j.jde.2014.04.008.  Google Scholar

[2]

T. CaraballoJ. A. LangaV. Melnik and J. Valero, Pullback attractors of nonautonomous and stochastic multivalued dynamical systems, Set-Valued Anal, 11 (2003), 153-201.  doi: 10.1023/A:1022902802385.  Google Scholar

[3]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors of infinite dimensional nonautonomous dynamical systems, Springer, New York, 2013. Google Scholar

[4]

A. N. CarvalhoJ. A. Langa and J. C. Robinson, Non-autonomous dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 703-747.  doi: 10.3934/dcdsb.2015.20.703.  Google Scholar

[5]

H. Cui and P. E. Kloeden, Forward random attractors of non-autonomous random dynamical systems, J. Differential Equations, 265 (2018), 6166-6186.   Google Scholar

[6]

H. Cui and P. E. Kloeden, Tail convergences of pullback attractors for asymptotically converging multi-valued dynamical systems, (in press). Google Scholar

[7]

H. Cui and J. A. Langa, Uniform attractors for non-autonommous random dynamical systems, J. Differential Equations, 263 (2017), 1225-1268.  doi: 10.1016/j.jde.2017.03.018.  Google Scholar

[8]

P. E. Kloeden, Asymptotic invariance and limit sets of general control systems, J. Differential Equations, 19 (1975), 91-105.  doi: 10.1016/0022-0396(75)90021-2.  Google Scholar

[9]

P. E. Kloeden, Asymptotic invariance and the discretisation of nonautonomous forward attracting sets, J. Comput. Dynamics, 3 (2016), 179-189.  doi: 10.3934/jcd.2016009.  Google Scholar

[10]

P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proc. Amer. Mat. Soc., 144 (2016), 259-268.  doi: 10.1090/proc/12735.  Google Scholar

[11]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Amer. Math. Soc., Providence, 2011. doi: 10.1090/surv/176.  Google Scholar

[12]

P. E. Kloeden and M. Yang, Forward attraction in nonautonomous difference equations, J. Difference Eqns. Applns., 22 (2016), 513-525.  doi: 10.1080/10236198.2015.1107550.  Google Scholar

[13]

V. Lakshmikantham and S. Leela, Asymptotic self-invariant sets and conditional stability, in Proc. Inter. Symp. Diff. Equations and Dynamical Systems, Puerto Rico 1965, Academic Press, New York, 1967, 363-373.  Google Scholar

[14]

J. P. Lasalle, The Stability of Dynamical Systems, SIAM-CBMS, Philadelphia, 1976.  Google Scholar

[15] M. I. Vishik, Asymptotic Behaviour of Solutions of Evolutionary Equations., Cambridge University Press, Cambridge, 1992.   Google Scholar
[1]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[2]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[3]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[4]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[5]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[6]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[8]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[9]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[10]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[11]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[12]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[13]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[14]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[15]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[16]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[17]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[18]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[19]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[20]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (279)
  • HTML views (597)
  • Cited by (0)

Other articles
by authors

[Back to Top]